Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfralw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. Version of nfral 3153 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 13-Dec-2024.) |
Ref | Expression |
---|---|
nfralw.1 | ⊢ Ⅎ𝑥𝐴 |
nfralw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfralw | ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfralw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nf5ri 2188 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
4 | nfralw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | nf5ri 2188 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
6 | 3, 5 | hbral 3146 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥∀𝑦 ∈ 𝐴 𝜑) |
7 | 6 | nf5i 2142 | 1 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 |
Copyright terms: Public domain | W3C validator |