MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfraldwOLD Structured version   Visualization version   GIF version

Theorem nfraldwOLD 3328
Description: Obsolete version of nfraldw 3315 as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013.) (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfraldwOLD.1 𝑦𝜑
nfraldwOLD.2 (𝜑𝑥𝐴)
nfraldwOLD.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfraldwOLD (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfraldwOLD
StepHypRef Expression
1 df-ral 3068 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2 nfraldwOLD.1 . . 3 𝑦𝜑
3 nfcvd 2909 . . . . 5 (𝜑𝑥𝑦)
4 nfraldwOLD.2 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeld 2920 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
6 nfraldwOLD.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
75, 6nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
82, 7nfald 2332 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝜓))
91, 8nfxfrd 1852 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1781  wcel 2108  wnfc 2893  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator