Home | Metamath
Proof Explorer Theorem List (p. 234 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tsmssplit 23301 | Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums (𝐹 ↾ 𝐶))) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums (𝐹 ↾ 𝐷))) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹)) | ||
Theorem | tsmsxplem1 23302* | Lemma for tsmsxp 23304. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → dom 𝐷 ⊆ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) | ||
Theorem | tsmsxplem2 23303* | Lemma for tsmsxp 23304. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ (𝐾 × 𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) & ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) | ||
Theorem | tsmsxp 23304* | Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19575 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 23302 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) | ||
Syntax | ctrg 23305 | The class of all topological division rings. |
class TopRing | ||
Syntax | ctdrg 23306 | The class of all topological division rings. |
class TopDRing | ||
Syntax | ctlm 23307 | The class of all topological modules. |
class TopMod | ||
Syntax | ctvc 23308 | The class of all topological vector spaces. |
class TopVec | ||
Definition | df-trg 23309 | Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | ||
Definition | df-tdrg 23310 | Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | ||
Definition | df-tlm 23311 | Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))} | ||
Definition | df-tvc 23312 | Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | ||
Theorem | istrg 23313 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) | ||
Theorem | trgtmd 23314 | The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) | ||
Theorem | istdrg 23315 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | ||
Theorem | tdrgunit 23316 | The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) | ||
Theorem | trgtgp 23317 | A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | ||
Theorem | trgtmd2 23318 | A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) | ||
Theorem | trgtps 23319 | A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | ||
Theorem | trgring 23320 | A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | ||
Theorem | trggrp 23321 | A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Grp) | ||
Theorem | tdrgtrg 23322 | A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | ||
Theorem | tdrgdrng 23323 | A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) | ||
Theorem | tdrgring 23324 | A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) | ||
Theorem | tdrgtmd 23325 | A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd) | ||
Theorem | tdrgtps 23326 | A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | ||
Theorem | istdrg2 23327 | A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | ||
Theorem | mulrcn 23328 | The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑇 = (+𝑓‘(mulGrp‘𝑅)) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑇 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | invrcn2 23329 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
Theorem | invrcn 23330 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) | ||
Theorem | cnmpt1mulr 23331* | Continuity of ring multiplication; analogue of cnmpt12f 22815 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
Theorem | cnmpt2mulr 23332* | Continuity of ring multiplication; analogue of cnmpt22f 22824 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
Theorem | dvrcn 23333 | The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | ||
Theorem | istlm 23334 | The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) | ||
Theorem | vscacn 23335 | The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tlmtmd 23336 | A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) | ||
Theorem | tlmtps 23337 | A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | ||
Theorem | tlmlmod 23338 | A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) | ||
Theorem | tlmtrg 23339 | The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) | ||
Theorem | tlmscatps 23340 | The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) | ||
Theorem | istvc 23341 | A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) | ||
Theorem | tvctdrg 23342 | The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) | ||
Theorem | cnmpt1vsca 23343* | Continuity of scalar multiplication; analogue of cnmpt12f 22815 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) | ||
Theorem | cnmpt2vsca 23344* | Continuity of scalar multiplication; analogue of cnmpt22f 22824 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) | ||
Theorem | tlmtgp 23345 | A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp) | ||
Theorem | tvctlm 23346 | A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopVec → 𝑊 ∈ TopMod) | ||
Theorem | tvclmod 23347 | A topological vector space is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | ||
Theorem | tvclvec 23348 | A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) | ||
Syntax | cust 23349 | Extend class notation with the class function of uniform structures. |
class UnifOn | ||
Definition | df-ust 23350* | Definition of a uniform structure. Definition 1 of [BourbakiTop1] p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn. Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014.) (Revised by Thierry Arnoux, 15-Nov-2017.) |
⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
Theorem | ustfn 23351 | The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
⊢ UnifOn Fn V | ||
Theorem | ustval 23352* | The class of all uniform structures for a base 𝑋. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
⊢ (𝑋 ∈ 𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
Theorem | isust 23353* | The predicate "𝑈 is a uniform structure with base 𝑋". (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
⊢ (𝑋 ∈ 𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | ||
Theorem | ustssxp 23354 | Entourages are subsets of the Cartesian product of the base set. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | ||
Theorem | ustssel 23355 | A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈)) | ||
Theorem | ustbasel 23356 | The full set is always an entourage. Condition FIIb of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | ||
Theorem | ustincl 23357 | A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑉 ∩ 𝑊) ∈ 𝑈) | ||
Theorem | ustdiag 23358 | The diagonal set is included in any entourage, i.e. any point is 𝑉 -close to itself. Condition UI of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | ||
Theorem | ustinvel 23359 | If 𝑉 is an entourage, so is its inverse. Condition UII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ◡𝑉 ∈ 𝑈) | ||
Theorem | ustexhalf 23360* | For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉) | ||
Theorem | ustrel 23361 | The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | ||
Theorem | ustfilxp 23362 | A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋))) | ||
Theorem | ustne0 23363 | A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) | ||
Theorem | ustssco 23364 | In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) | ||
Theorem | ustexsym 23365* | In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) | ||
Theorem | ustex2sym 23366* | In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉)) | ||
Theorem | ustex3sym 23367* | In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than a third of 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉)) | ||
Theorem | ustref 23368 | Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑉𝐴) | ||
Theorem | ust0 23369 | The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
⊢ (UnifOn‘∅) = {{∅}} | ||
Theorem | ustn0 23370 | The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ ¬ ∅ ∈ ∪ ran UnifOn | ||
Theorem | ustund 23371 | If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉) & ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∪ 𝐵) × (𝐴 ∪ 𝐵)) ⊆ (𝑉 ∘ 𝑉)) | ||
Theorem | ustelimasn 23372 | Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) | ||
Theorem | ustneism 23373 | For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉 ∘ ◡𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) | ||
Theorem | elrnust 23374 | First direction for ustbas 23377. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | ||
Theorem | ustbas2 23375 | Second direction for ustbas 23377. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | ||
Theorem | ustuni 23376 | The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) | ||
Theorem | ustbas 23377 | Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ 𝑋 = dom ∪ 𝑈 ⇒ ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) | ||
Theorem | ustimasn 23378 | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) | ||
Theorem | trust 23379 | The trace of a uniform structure 𝑈 on a subset 𝐴 is a uniform structure on 𝐴. Definition 3 of [BourbakiTop1] p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) | ||
Syntax | cutop 23380 | Extend class notation with the function inducing a topology from a uniform structure. |
class unifTop | ||
Definition | df-utop 23381* | Definition of a topology induced by a uniform structure. Definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ unifTop = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) | ||
Theorem | utopval 23382* | The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | ||
Theorem | elutop 23383* | Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) | ||
Theorem | utoptop 23384 | The topology induced by a uniform structure 𝑈 is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) | ||
Theorem | utopbas 23385 | The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) | ||
Theorem | utoptopon 23386 | Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) | ||
Theorem | restutop 23387 | Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
Theorem | restutopopn 23388 | The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
Theorem | ustuqtoplem 23389* | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑁‘𝑃) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) | ||
Theorem | ustuqtop0 23390* | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) | ||
Theorem | ustuqtop1 23391* | Lemma for ustuqtop 23396, similar to ssnei2 22265. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) | ||
Theorem | ustuqtop2 23392* | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) | ||
Theorem | ustuqtop3 23393* | Lemma for ustuqtop 23396, similar to elnei 22260. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) | ||
Theorem | ustuqtop4 23394* | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) | ||
Theorem | ustuqtop5 23395* | Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) | ||
Theorem | ustuqtop 23396* | For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) | ||
Theorem | utopsnneiplem 23397* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) & ⊢ 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
Theorem | utopsnneip 23398* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
Theorem | utopsnnei 23399 | Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) | ||
Theorem | utop2nei 23400 | For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉 ∈ 𝑈 ∧ ◡𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀 ∘ 𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |