| Metamath
Proof Explorer Theorem List (p. 234 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | discmp 23301 | A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp) | ||
| Theorem | cmpsublem 23302* | Lemma for cmpsub 23303. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪ (𝐽 ↾t 𝑆) = ∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) | ||
| Theorem | cmpsub 23303* | Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | ||
| Theorem | tgcmp 23304* | A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 23948, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcld 23305 | A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝑆) ∈ Comp) | ||
| Theorem | uncmp 23306 | The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) | ||
| Theorem | fiuncmp 23307* | A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝐽 ↾t 𝐵) ∈ Comp) → (𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵) ∈ Comp) | ||
| Theorem | sscmp 23308 | A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) | ||
| Theorem | hauscmplem 23309* | Lemma for hauscmp 23310. (Contributed by Mario Carneiro, 27-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) & ⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | ||
| Theorem | hauscmp 23310 | A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | cmpfi 23311* | If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | ||
| Theorem | cmpfii 23312 | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) | ||
| Theorem | bwth 23313* | The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴)) | ||
| Syntax | cconn 23314 | Extend class notation with the class of all connected topologies. |
| class Conn | ||
| Definition | df-conn 23315 | Topologies are connected when only ∅ and ∪ 𝑗 are both open and closed. (Contributed by FL, 17-Nov-2008.) |
| ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | ||
| Theorem | isconn 23316 | The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) | ||
| Theorem | isconn2 23317 | The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) | ||
| Theorem | connclo 23318 | The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 = 𝑋) | ||
| Theorem | conndisj 23319 | If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≠ 𝑋) | ||
| Theorem | conntop 23320 | A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
| ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | ||
| Theorem | indisconn 23321 | The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Conn | ||
| Theorem | dfconn2 23322* | An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) | ||
| Theorem | connsuba 23323* | Connectedness for a subspace. See connsub 23324. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | ||
| Theorem | connsub 23324* | Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) | ||
| Theorem | cnconn 23325 | Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) | ||
| Theorem | nconnsubb 23326 | Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑈 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → (𝑉 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → ((𝑈 ∩ 𝑉) ∩ 𝐴) = ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → ¬ (𝐽 ↾t 𝐴) ∈ Conn) | ||
| Theorem | connsubclo 23327 | If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | connima 23328 | The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) | ||
| Theorem | conncn 23329 | A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑈 ∈ 𝐾) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) | ||
| Theorem | iunconnlem 23330* | Lemma for iunconn 23331. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑈 ∪ 𝑉)) & ⊢ Ⅎ𝑘𝜑 ⇒ ⊢ (𝜑 → ¬ 𝑃 ∈ 𝑈) | ||
| Theorem | iunconn 23331* | The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
| Theorem | unconn 23332 | The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) | ||
| Theorem | clsconn 23333 | The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) | ||
| Theorem | conncompid 23334* | The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | ||
| Theorem | conncompconn 23335* | The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | ||
| Theorem | conncompss 23336* | The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) | ||
| Theorem | conncompcld 23337* | The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | conncompclo 23338* | The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) | ||
| Theorem | t1connperf 23339 | A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) | ||
| Syntax | c1stc 23340 | Extend class definition to include the class of all first-countable topologies. |
| class 1stω | ||
| Syntax | c2ndc 23341 | Extend class definition to include the class of all second-countable topologies. |
| class 2ndω | ||
| Definition | df-1stc 23342* | Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | ||
| Definition | df-2ndc 23343* | Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | ||
| Theorem | is1stc 23344* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) | ||
| Theorem | is1stc2 23345* | An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | ||
| Theorem | 1stctop 23346 | A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) | ||
| Theorem | 1stcclb 23347* | A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | 1stcfb 23348* | For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) | ||
| Theorem | is2ndc 23349* | The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | ||
| Theorem | 2ndctop 23350 | A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) | ||
| Theorem | 2ndci 23351 | A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | ||
| Theorem | 2ndcsb 23352* | Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) | ||
| Theorem | 2ndcredom 23353 | A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) | ||
| Theorem | 2ndc1stc 23354 | A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω) | ||
| Theorem | 1stcrestlem 23355* | Lemma for 1stcrest 23356. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
| Theorem | 1stcrest 23356 | A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 1stω) | ||
| Theorem | 2ndcrest 23357 | A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) | ||
| Theorem | 2ndcctbss 23358* | If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝐽 = (topGen‘𝐵) & ⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⇒ ⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) | ||
| Theorem | 2ndcdisj 23359* | Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcdisj2 23360* | Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcomap 23361* | A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ 2ndω) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ 2ndω) | ||
| Theorem | 2ndcsep 23362* | A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) | ||
| Theorem | dis2ndc 23363 | A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω) | ||
| Theorem | 1stcelcls 23364* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10348. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
| Theorem | 1stccnp 23365* | A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10348, but only via 1stcelcls 23364, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
| Theorem | 1stccn 23366* | A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
| Syntax | clly 23367 | Extend class notation with the "locally 𝐴 " predicate of a topological space. |
| class Locally 𝐴 | ||
| Syntax | cnlly 23368 | Extend class notation with the "N-locally 𝐴 " predicate of a topological space. |
| class 𝑛-Locally 𝐴 | ||
| Definition | df-lly 23369* | Define a space that is locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is locally 𝐴 if every neighborhood of a point contains an open subneighborhood that is 𝐴 in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | ||
| Definition | df-nlly 23370* |
Define a space that is n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | ||
| Theorem | islly 23371* | The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | ||
| Theorem | isnlly 23372* | The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | llyeq 23373 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) | ||
| Theorem | nllyeq 23374 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) | ||
| Theorem | llytop 23375 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | nllytop 23376 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | llyi 23377* | The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nllyi 23378* | The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nlly2i 23379* | Eliminate the neighborhood symbol from nllyi 23378. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ 𝒫 𝑈∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | ||
| Theorem | llynlly 23380 | A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴) | ||
| Theorem | llyssnlly 23381 | A locally 𝐴 space is n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 ⊆ 𝑛-Locally 𝐴 | ||
| Theorem | llyss 23382 | The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) | ||
| Theorem | nllyss 23383 | The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) | ||
| Theorem | subislly 23384* | The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) | ||
| Theorem | restnlly 23385* | If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) | ||
| Theorem | restlly 23386* | If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ Top) ⇒ ⊢ (𝜑 → 𝐴 ⊆ Locally 𝐴) | ||
| Theorem | islly2 23387* | An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) | ||
| Theorem | llyrest 23388 | An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) | ||
| Theorem | nllyrest 23389 | An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴) | ||
| Theorem | loclly 23390 | If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) | ||
| Theorem | llyidm 23391 | Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Locally 𝐴 = Locally 𝐴 | ||
| Theorem | nllyidm 23392 | Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23390 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 | ||
| Theorem | toplly 23393 | A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Top = Top | ||
| Theorem | topnlly 23394 | A topology is n-locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally Top = Top | ||
| Theorem | hauslly 23395 | A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus) | ||
| Theorem | hausnlly 23396 | A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally Haus ↔ 𝐽 ∈ Locally Haus) | ||
| Theorem | hausllycmp 23397 | A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp) | ||
| Theorem | cldllycmp 23398 | A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 23389.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp) | ||
| Theorem | lly1stc 23399 | First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Locally 1stω = 1stω | ||
| Theorem | dislly 23400* | The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |