| Metamath
Proof Explorer Theorem List (p. 234 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isconn2 23301 | The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) | ||
| Theorem | connclo 23302 | The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 = 𝑋) | ||
| Theorem | conndisj 23303 | If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≠ 𝑋) | ||
| Theorem | conntop 23304 | A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
| ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | ||
| Theorem | indisconn 23305 | The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Conn | ||
| Theorem | dfconn2 23306* | An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) | ||
| Theorem | connsuba 23307* | Connectedness for a subspace. See connsub 23308. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | ||
| Theorem | connsub 23308* | Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) | ||
| Theorem | cnconn 23309 | Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) | ||
| Theorem | nconnsubb 23310 | Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑈 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → (𝑉 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → ((𝑈 ∩ 𝑉) ∩ 𝐴) = ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → ¬ (𝐽 ↾t 𝐴) ∈ Conn) | ||
| Theorem | connsubclo 23311 | If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | connima 23312 | The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) | ||
| Theorem | conncn 23313 | A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑈 ∈ 𝐾) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) | ||
| Theorem | iunconnlem 23314* | Lemma for iunconn 23315. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑈 ∪ 𝑉)) & ⊢ Ⅎ𝑘𝜑 ⇒ ⊢ (𝜑 → ¬ 𝑃 ∈ 𝑈) | ||
| Theorem | iunconn 23315* | The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
| Theorem | unconn 23316 | The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) | ||
| Theorem | clsconn 23317 | The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) | ||
| Theorem | conncompid 23318* | The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | ||
| Theorem | conncompconn 23319* | The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | ||
| Theorem | conncompss 23320* | The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) | ||
| Theorem | conncompcld 23321* | The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | conncompclo 23322* | The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) | ||
| Theorem | t1connperf 23323 | A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) | ||
| Syntax | c1stc 23324 | Extend class definition to include the class of all first-countable topologies. |
| class 1stω | ||
| Syntax | c2ndc 23325 | Extend class definition to include the class of all second-countable topologies. |
| class 2ndω | ||
| Definition | df-1stc 23326* | Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | ||
| Definition | df-2ndc 23327* | Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | ||
| Theorem | is1stc 23328* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) | ||
| Theorem | is1stc2 23329* | An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | ||
| Theorem | 1stctop 23330 | A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) | ||
| Theorem | 1stcclb 23331* | A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | 1stcfb 23332* | For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) | ||
| Theorem | is2ndc 23333* | The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | ||
| Theorem | 2ndctop 23334 | A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) | ||
| Theorem | 2ndci 23335 | A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | ||
| Theorem | 2ndcsb 23336* | Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) | ||
| Theorem | 2ndcredom 23337 | A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) | ||
| Theorem | 2ndc1stc 23338 | A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω) | ||
| Theorem | 1stcrestlem 23339* | Lemma for 1stcrest 23340. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
| Theorem | 1stcrest 23340 | A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 1stω) | ||
| Theorem | 2ndcrest 23341 | A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) | ||
| Theorem | 2ndcctbss 23342* | If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝐽 = (topGen‘𝐵) & ⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⇒ ⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) | ||
| Theorem | 2ndcdisj 23343* | Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcdisj2 23344* | Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcomap 23345* | A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ 2ndω) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ 2ndω) | ||
| Theorem | 2ndcsep 23346* | A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) | ||
| Theorem | dis2ndc 23347 | A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω) | ||
| Theorem | 1stcelcls 23348* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10388. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
| Theorem | 1stccnp 23349* | A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10388, but only via 1stcelcls 23348, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
| Theorem | 1stccn 23350* | A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
| Syntax | clly 23351 | Extend class notation with the "locally 𝐴 " predicate of a topological space. |
| class Locally 𝐴 | ||
| Syntax | cnlly 23352 | Extend class notation with the "N-locally 𝐴 " predicate of a topological space. |
| class 𝑛-Locally 𝐴 | ||
| Definition | df-lly 23353* | Define a space that is locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is locally 𝐴 if every neighborhood of a point contains an open subneighborhood that is 𝐴 in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | ||
| Definition | df-nlly 23354* |
Define a space that is n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | ||
| Theorem | islly 23355* | The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | ||
| Theorem | isnlly 23356* | The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | llyeq 23357 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) | ||
| Theorem | nllyeq 23358 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) | ||
| Theorem | llytop 23359 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | nllytop 23360 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | llyi 23361* | The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nllyi 23362* | The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nlly2i 23363* | Eliminate the neighborhood symbol from nllyi 23362. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ 𝒫 𝑈∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | ||
| Theorem | llynlly 23364 | A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴) | ||
| Theorem | llyssnlly 23365 | A locally 𝐴 space is n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 ⊆ 𝑛-Locally 𝐴 | ||
| Theorem | llyss 23366 | The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) | ||
| Theorem | nllyss 23367 | The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) | ||
| Theorem | subislly 23368* | The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) | ||
| Theorem | restnlly 23369* | If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) | ||
| Theorem | restlly 23370* | If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ Top) ⇒ ⊢ (𝜑 → 𝐴 ⊆ Locally 𝐴) | ||
| Theorem | islly2 23371* | An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) | ||
| Theorem | llyrest 23372 | An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) | ||
| Theorem | nllyrest 23373 | An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴) | ||
| Theorem | loclly 23374 | If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) | ||
| Theorem | llyidm 23375 | Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Locally 𝐴 = Locally 𝐴 | ||
| Theorem | nllyidm 23376 | Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23374 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 | ||
| Theorem | toplly 23377 | A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Top = Top | ||
| Theorem | topnlly 23378 | A topology is n-locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally Top = Top | ||
| Theorem | hauslly 23379 | A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus) | ||
| Theorem | hausnlly 23380 | A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally Haus ↔ 𝐽 ∈ Locally Haus) | ||
| Theorem | hausllycmp 23381 | A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp) | ||
| Theorem | cldllycmp 23382 | A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 23373.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp) | ||
| Theorem | lly1stc 23383 | First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Locally 1stω = 1stω | ||
| Theorem | dislly 23384* | The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) | ||
| Theorem | disllycmp 23385 | A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp) | ||
| Theorem | dis1stc 23386 | A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) | ||
| Theorem | hausmapdom 23387 | If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23875 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) | ||
| Theorem | hauspwdom 23388 | Simplify the cardinal 𝐴↑ℕ of hausmapdom 23387 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵) | ||
| Syntax | cref 23389 | Extend class definition to include the refinement relation. |
| class Ref | ||
| Syntax | cptfin 23390 | Extend class definition to include the class of point-finite covers. |
| class PtFin | ||
| Syntax | clocfin 23391 | Extend class definition to include the class of locally finite covers. |
| class LocFin | ||
| Definition | df-ref 23392* | Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | ||
| Definition | df-ptfin 23393* | Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} | ||
| Definition | df-locfin 23394* | Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) | ||
| Theorem | refrel 23395 | Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ Rel Ref | ||
| Theorem | isref 23396* | The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 36327. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) | ||
| Theorem | refbas 23397 | A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) | ||
| Theorem | refssex 23398* | Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) | ||
| Theorem | ssref 23399 | A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) | ||
| Theorem | refref 23400 | Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |