| Metamath
Proof Explorer Theorem List (p. 234 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | perfcls 23301 | A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Perf ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Perf)) | ||
| Theorem | restt0 23302 | A subspace of a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Kol2 ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Kol2) | ||
| Theorem | restt1 23303 | A subspace of a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Fre) | ||
| Theorem | resthaus 23304 | A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) (Proof shortened by Mario Carneiro, 25-Aug-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Haus) | ||
| Theorem | t1sep2 23305* | Any two points in a T1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) | ||
| Theorem | t1sep 23306* | Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) | ||
| Theorem | sncld 23307 | A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) | ||
| Theorem | sshauslem 23308 | Lemma for sshaus 23311 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) | ||
| Theorem | sst0 23309 | A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Kol2) | ||
| Theorem | sst1 23310 | A topology finer than a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Fre) | ||
| Theorem | sshaus 23311 | A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | ||
| Theorem | regsep2 23312* | In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | isreg2 23313* | A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) | ||
| Theorem | dnsconst 23314 | If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7045). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) | ||
| Theorem | ordtt1 23315 | The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre) | ||
| Theorem | lmmo 23316 | A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | lmfun 23317 | The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | ||
| Theorem | dishaus 23318 | A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) | ||
| Theorem | ordthauslem 23319* | Lemma for ordthaus 23320. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | ||
| Theorem | ordthaus 23320 | The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus) | ||
| Theorem | xrhaus 23321 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ (ordTop‘ ≤ ) ∈ Haus | ||
| Syntax | ccmp 23322 | Extend class notation with the class of all compact spaces. |
| class Comp | ||
| Definition | df-cmp 23323* | Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of [BourbakiTop1] p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008.) |
| ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | ||
| Theorem | iscmp 23324* | The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcov 23325* | An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) | ||
| Theorem | cmpcov2 23326* | Rewrite cmpcov 23325 for the cover {𝑦 ∈ 𝐽 ∣ 𝜑}. (Contributed by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) | ||
| Theorem | cmpcovf 23327* | Combine cmpcov 23325 with ac6sfi 9290 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) | ||
| Theorem | cncmp 23328 | Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) | ||
| Theorem | fincmp 23329 | A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
| ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) | ||
| Theorem | 0cmp 23330 | The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
| ⊢ {∅} ∈ Comp | ||
| Theorem | cmptop 23331 | A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | ||
| Theorem | rncmp 23332 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | ||
| Theorem | imacmp 23333 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) | ||
| Theorem | discmp 23334 | A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp) | ||
| Theorem | cmpsublem 23335* | Lemma for cmpsub 23336. (Contributed by Jeff Hankins, 28-Jun-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪ (𝐽 ↾t 𝑆) = ∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) | ||
| Theorem | cmpsub 23336* | Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | ||
| Theorem | tgcmp 23337* | A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 23981, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
| Theorem | cmpcld 23338 | A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝑆) ∈ Comp) | ||
| Theorem | uncmp 23339 | The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) | ||
| Theorem | fiuncmp 23340* | A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝐽 ↾t 𝐵) ∈ Comp) → (𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵) ∈ Comp) | ||
| Theorem | sscmp 23341 | A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) | ||
| Theorem | hauscmplem 23342* | Lemma for hauscmp 23343. (Contributed by Mario Carneiro, 27-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) & ⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | ||
| Theorem | hauscmp 23343 | A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | cmpfi 23344* | If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | ||
| Theorem | cmpfii 23345 | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) | ||
| Theorem | bwth 23346* | The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴)) | ||
| Syntax | cconn 23347 | Extend class notation with the class of all connected topologies. |
| class Conn | ||
| Definition | df-conn 23348 | Topologies are connected when only ∅ and ∪ 𝑗 are both open and closed. (Contributed by FL, 17-Nov-2008.) |
| ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | ||
| Theorem | isconn 23349 | The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) | ||
| Theorem | isconn2 23350 | The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) | ||
| Theorem | connclo 23351 | The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 = 𝑋) | ||
| Theorem | conndisj 23352 | If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≠ 𝑋) | ||
| Theorem | conntop 23353 | A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
| ⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | ||
| Theorem | indisconn 23354 | The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Conn | ||
| Theorem | dfconn2 23355* | An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) | ||
| Theorem | connsuba 23356* | Connectedness for a subspace. See connsub 23357. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | ||
| Theorem | connsub 23357* | Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) | ||
| Theorem | cnconn 23358 | Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) | ||
| Theorem | nconnsubb 23359 | Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑈 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → (𝑉 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → ((𝑈 ∩ 𝑉) ∩ 𝐴) = ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → ¬ (𝐽 ↾t 𝐴) ∈ Conn) | ||
| Theorem | connsubclo 23360 | If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | connima 23361 | The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) | ||
| Theorem | conncn 23362 | A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑈 ∈ 𝐾) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) | ||
| Theorem | iunconnlem 23363* | Lemma for iunconn 23364. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑈 ∪ 𝑉)) & ⊢ Ⅎ𝑘𝜑 ⇒ ⊢ (𝜑 → ¬ 𝑃 ∈ 𝑈) | ||
| Theorem | iunconn 23364* | The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
| Theorem | unconn 23365 | The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) | ||
| Theorem | clsconn 23366 | The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) | ||
| Theorem | conncompid 23367* | The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | ||
| Theorem | conncompconn 23368* | The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | ||
| Theorem | conncompss 23369* | The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) | ||
| Theorem | conncompcld 23370* | The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | ||
| Theorem | conncompclo 23371* | The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) | ||
| Theorem | t1connperf 23372 | A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) | ||
| Syntax | c1stc 23373 | Extend class definition to include the class of all first-countable topologies. |
| class 1stω | ||
| Syntax | c2ndc 23374 | Extend class definition to include the class of all second-countable topologies. |
| class 2ndω | ||
| Definition | df-1stc 23375* | Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | ||
| Definition | df-2ndc 23376* | Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | ||
| Theorem | is1stc 23377* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) | ||
| Theorem | is1stc2 23378* | An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | ||
| Theorem | 1stctop 23379 | A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) | ||
| Theorem | 1stcclb 23380* | A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | 1stcfb 23381* | For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) | ||
| Theorem | is2ndc 23382* | The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | ||
| Theorem | 2ndctop 23383 | A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) | ||
| Theorem | 2ndci 23384 | A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | ||
| Theorem | 2ndcsb 23385* | Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) | ||
| Theorem | 2ndcredom 23386 | A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) | ||
| Theorem | 2ndc1stc 23387 | A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) |
| ⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω) | ||
| Theorem | 1stcrestlem 23388* | Lemma for 1stcrest 23389. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
| Theorem | 1stcrest 23389 | A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 1stω) | ||
| Theorem | 2ndcrest 23390 | A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) | ||
| Theorem | 2ndcctbss 23391* | If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝐽 = (topGen‘𝐵) & ⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⇒ ⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) | ||
| Theorem | 2ndcdisj 23392* | Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcdisj2 23393* | Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → 𝐴 ≼ ω) | ||
| Theorem | 2ndcomap 23394* | A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ 2ndω) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ 2ndω) | ||
| Theorem | 2ndcsep 23395* | A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) | ||
| Theorem | dis2ndc 23396 | A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω) | ||
| Theorem | 1stcelcls 23397* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10447. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
| Theorem | 1stccnp 23398* | A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10447, but only via 1stcelcls 23397, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
| Theorem | 1stccn 23399* | A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
| Syntax | clly 23400 | Extend class notation with the "locally 𝐴 " predicate of a topological space. |
| class Locally 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |