HomeHome Metamath Proof Explorer
Theorem List (p. 234 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29276)
  Hilbert Space Explorer  Hilbert Space Explorer
(29277-30799)
  Users' Mathboxes  Users' Mathboxes
(30800-46482)
 

Theorem List for Metamath Proof Explorer - 23301-23400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtsmssplit 23301 Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐺 ∈ TopMnd)    &   (𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))    &   (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))    &   (𝜑 → (𝐶𝐷) = ∅)    &   (𝜑𝐴 = (𝐶𝐷))       (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
 
Theoremtsmsxplem1 23302* Lemma for tsmsxp 23304. (Contributed by Mario Carneiro, 21-Sep-2015.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐺 ∈ TopGrp)    &   (𝜑𝐴𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)    &   (𝜑𝐻:𝐴𝐵)    &   ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))    &   𝐽 = (TopOpen‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐿𝐽)    &   (𝜑0𝐿)    &   (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))    &   (𝜑 → dom 𝐷𝐾)    &   (𝜑𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin))       (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷𝑛 ∧ ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿))
 
Theoremtsmsxplem2 23303* Lemma for tsmsxp 23304. (Contributed by Mario Carneiro, 21-Sep-2015.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐺 ∈ TopGrp)    &   (𝜑𝐴𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)    &   (𝜑𝐻:𝐴𝐵)    &   ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))    &   𝐽 = (TopOpen‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)    &   (𝜑𝐿𝐽)    &   (𝜑0𝐿)    &   (𝜑𝐾 ∈ (𝒫 𝐴 ∩ Fin))    &   (𝜑 → ∀𝑐𝑆𝑑𝑇 (𝑐 + 𝑑) ∈ 𝑈)    &   (𝜑𝑁 ∈ (𝒫 𝐶 ∩ Fin))    &   (𝜑𝐷 ⊆ (𝐾 × 𝑁))    &   (𝜑 → ∀𝑥𝐾 ((𝐻𝑥) (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿)    &   (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆)    &   (𝜑 → ∀𝑔 ∈ (𝐿m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇)       (𝜑 → (𝐺 Σg (𝐻𝐾)) ∈ 𝑈)
 
Theoremtsmsxp 23304* Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 19575 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 23302 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐺 ∈ TopGrp)    &   (𝜑𝐴𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)    &   (𝜑𝐻:𝐴𝐵)    &   ((𝜑𝑗𝐴) → (𝐻𝑗) ∈ (𝐺 tsums (𝑘𝐶 ↦ (𝑗𝐹𝑘))))       (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻))
 
12.2.8  Topological rings, fields, vector spaces
 
Syntaxctrg 23305 The class of all topological division rings.
class TopRing
 
Syntaxctdrg 23306 The class of all topological division rings.
class TopDRing
 
Syntaxctlm 23307 The class of all topological modules.
class TopMod
 
Syntaxctvc 23308 The class of all topological vector spaces.
class TopVec
 
Definitiondf-trg 23309 Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.)
TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
 
Definitiondf-tdrg 23310 Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
 
Definitiondf-tlm 23311 Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.)
TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
 
Definitiondf-tvc 23312 Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing}
 
Theoremistrg 23313 Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd))
 
Theoremtrgtmd 23314 The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd)
 
Theoremistdrg 23315 Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s 𝑈) ∈ TopGrp))
 
Theoremtdrgunit 23316 The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ TopDRing → (𝑀s 𝑈) ∈ TopGrp)
 
Theoremtrgtgp 23317 A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
 
Theoremtrgtmd2 23318 A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopRing → 𝑅 ∈ TopMnd)
 
Theoremtrgtps 23319 A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopRing → 𝑅 ∈ TopSp)
 
Theoremtrgring 23320 A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopRing → 𝑅 ∈ Ring)
 
Theoremtrggrp 23321 A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopRing → 𝑅 ∈ Grp)
 
Theoremtdrgtrg 23322 A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopDRing → 𝑅 ∈ TopRing)
 
Theoremtdrgdrng 23323 A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopDRing → 𝑅 ∈ DivRing)
 
Theoremtdrgring 23324 A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopDRing → 𝑅 ∈ Ring)
 
Theoremtdrgtmd 23325 A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd)
 
Theoremtdrgtps 23326 A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑅 ∈ TopDRing → 𝑅 ∈ TopSp)
 
Theoremistdrg2 23327 A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝑀 = (mulGrp‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
 
Theoremmulrcn 23328 The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &   𝑇 = (+𝑓‘(mulGrp‘𝑅))       (𝑅 ∈ TopRing → 𝑇 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
 
Theoreminvrcn2 23329 The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &   𝐼 = (invr𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
 
Theoreminvrcn 23330 The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &   𝐼 = (invr𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽t 𝑈) Cn 𝐽))
 
Theoremcnmpt1mulr 23331* Continuity of ring multiplication; analogue of cnmpt12f 22815 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ TopRing)    &   (𝜑𝐾 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽))
 
Theoremcnmpt2mulr 23332* Continuity of ring multiplication; analogue of cnmpt22f 22824 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ TopRing)    &   (𝜑𝐾 ∈ (TopOn‘𝑋))    &   (𝜑𝐿 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
 
Theoremdvrcn 23333 The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐽 = (TopOpen‘𝑅)    &    / = (/r𝑅)    &   𝑈 = (Unit‘𝑅)       (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽t 𝑈)) Cn 𝐽))
 
Theoremistlm 23334 The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.)
· = ( ·sf𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (TopOpen‘𝐹)       (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)))
 
Theoremvscacn 23335 The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
· = ( ·sf𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &   𝐾 = (TopOpen‘𝐹)       (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
 
Theoremtlmtmd 23336 A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
 
Theoremtlmtps 23337 A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
 
Theoremtlmlmod 23338 A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopMod → 𝑊 ∈ LMod)
 
Theoremtlmtrg 23339 The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
 
Theoremtlmscatps 23340 The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
 
Theoremistvc 23341 A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing))
 
Theoremtvctdrg 23342 The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing)
 
Theoremcnmpt1vsca 23343* Continuity of scalar multiplication; analogue of cnmpt12f 22815 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐾 = (TopOpen‘𝐹)    &   (𝜑𝑊 ∈ TopMod)    &   (𝜑𝐿 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐿 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐿 Cn 𝐽))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽))
 
Theoremcnmpt2vsca 23344* Continuity of scalar multiplication; analogue of cnmpt22f 22824 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝐾 = (TopOpen‘𝐹)    &   (𝜑𝑊 ∈ TopMod)    &   (𝜑𝐿 ∈ (TopOn‘𝑋))    &   (𝜑𝑀 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
 
Theoremtlmtgp 23345 A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)
 
Theoremtvctlm 23346 A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopVec → 𝑊 ∈ TopMod)
 
Theoremtvclmod 23347 A topological vector space is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopVec → 𝑊 ∈ LMod)
 
Theoremtvclvec 23348 A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝑊 ∈ TopVec → 𝑊 ∈ LVec)
 
12.3  Uniform Structures and Spaces
 
12.3.1  Uniform structures
 
Syntaxcust 23349 Extend class notation with the class function of uniform structures.
class UnifOn
 
Definitiondf-ust 23350* Definition of a uniform structure. Definition 1 of [BourbakiTop1] p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn. Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014.) (Revised by Thierry Arnoux, 15-Nov-2017.)
UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
 
Theoremustfn 23351 The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.)
UnifOn Fn V
 
Theoremustval 23352* The class of all uniform structures for a base 𝑋. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.)
(𝑋𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
 
Theoremisust 23353* The predicate "𝑈 is a uniform structure with base 𝑋". (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.)
(𝑋𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
 
Theoremustssxp 23354 Entourages are subsets of the Cartesian product of the base set. (Contributed by Thierry Arnoux, 19-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
 
Theoremustssel 23355 A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))
 
Theoremustbasel 23356 The full set is always an entourage. Condition FIIb of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
 
Theoremustincl 23357 A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊𝑈) → (𝑉𝑊) ∈ 𝑈)
 
Theoremustdiag 23358 The diagonal set is included in any entourage, i.e. any point is 𝑉 -close to itself. Condition UI of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
 
Theoremustinvel 23359 If 𝑉 is an entourage, so is its inverse. Condition UII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉𝑈)
 
Theoremustexhalf 23360* For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑉)
 
Theoremustrel 23361 The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
 
Theoremustfilxp 23362 A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))
 
Theoremustne0 23363 A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
 
Theoremustssco 23364 In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))
 
Theoremustexsym 23365* In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
 
Theoremustex2sym 23366* In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
 
Theoremustex3sym 23367* In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than a third of 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
 
Theoremustref 23368 Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴𝑉𝐴)
 
Theoremust0 23369 The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.)
(UnifOn‘∅) = {{∅}}
 
Theoremustn0 23370 The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.)
¬ ∅ ∈ ran UnifOn
 
Theoremustund 23371 If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.)
(𝜑 → (𝐴 × 𝐴) ⊆ 𝑉)    &   (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉)    &   (𝜑 → (𝐴𝐵) ≠ ∅)       (𝜑 → ((𝐴𝐵) × (𝐴𝐵)) ⊆ (𝑉𝑉))
 
Theoremustelimasn 23372 Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴 ∈ (𝑉 “ {𝐴}))
 
Theoremustneism 23373 For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.)
((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉𝑉))
 
Theoremelrnust 23374 First direction for ustbas 23377. (Contributed by Thierry Arnoux, 16-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
 
Theoremustbas2 23375 Second direction for ustbas 23377. (Contributed by Thierry Arnoux, 16-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
 
Theoremustuni 23376 The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (𝑋 × 𝑋))
 
Theoremustbas 23377 Recover the base of an uniform structure 𝑈. ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.)
𝑋 = dom 𝑈       (𝑈 ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋))
 
Theoremustimasn 23378 Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 5-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋)
 
Theoremtrust 23379 The trace of a uniform structure 𝑈 on a subset 𝐴 is a uniform structure on 𝐴. Definition 3 of [BourbakiTop1] p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
 
12.3.2  The topology induced by an uniform structure
 
Syntaxcutop 23380 Extend class notation with the function inducing a topology from a uniform structure.
class unifTop
 
Definitiondf-utop 23381* Definition of a topology induced by a uniform structure. Definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.)
unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
 
Theoremutopval 23382* The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})
 
Theoremelutop 23383* Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑣𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)))
 
Theoremutoptop 23384 The topology induced by a uniform structure 𝑈 is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
 
Theoremutopbas 23385 The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.)
(𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
 
Theoremutoptopon 23386 Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.)
(𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
 
Theoremrestutop 23387 Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
 
Theoremrestutopopn 23388 The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈t (𝐴 × 𝐴))))
 
Theoremustuqtoplem 23389* Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑉) → (𝐴 ∈ (𝑁𝑃) ↔ ∃𝑤𝑈 𝐴 = (𝑤 “ {𝑃})))
 
Theoremustuqtop0 23390* Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
 
Theoremustuqtop1 23391* Lemma for ustuqtop 23396, similar to ssnei2 22265. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
 
Theoremustuqtop2 23392* Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
 
Theoremustuqtop3 23393* Lemma for ustuqtop 23396, similar to elnei 22260. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
 
Theoremustuqtop4 23394* Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
 
Theoremustuqtop5 23395* Lemma for ustuqtop 23396. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
 
Theoremustuqtop 23396* For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
 
Theoremutopsnneiplem 23397* The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.)
𝐽 = (unifTop‘𝑈)    &   𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
 
Theoremutopsnneip 23398* The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
 
Theoremutopsnnei 23399 Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑃𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
 
Theoremutop2nei 23400 For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.)
𝐽 = (unifTop‘𝑈)       ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46482
  Copyright terms: Public domain < Previous  Next >