| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > llytop | Structured version Visualization version GIF version | ||
| Description: A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| llytop | ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islly 23355 | . 2 ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 𝒫 cpw 4563 (class class class)co 7387 ↾t crest 17383 Topctop 22780 Locally clly 23351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lly 23353 |
| This theorem is referenced by: llynlly 23364 islly2 23371 llyrest 23372 llyidm 23375 nllyidm 23376 toplly 23377 lly1stc 23383 txlly 23523 |
| Copyright terms: Public domain | W3C validator |