MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0sd Structured version   Visualization version   GIF version

Theorem nnn0sd 28348
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Hypothesis
Ref Expression
nnn0sd.1 (𝜑𝐴 ∈ ℕs)
Assertion
Ref Expression
nnn0sd (𝜑𝐴 ∈ ℕ0s)

Proof of Theorem nnn0sd
StepHypRef Expression
1 nnssn0s 28341 . 2 s ⊆ ℕ0s
2 nnn0sd.1 . 2 (𝜑𝐴 ∈ ℕs)
31, 2sselid 3993 1 (𝜑𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  0scnn0s 28333  scnns 28334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-ss 3980  df-nns 28336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator