MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0sd Structured version   Visualization version   GIF version

Theorem nnn0sd 28351
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Hypothesis
Ref Expression
nnn0sd.1 (𝜑𝐴 ∈ ℕs)
Assertion
Ref Expression
nnn0sd (𝜑𝐴 ∈ ℕ0s)

Proof of Theorem nnn0sd
StepHypRef Expression
1 nnssn0s 28344 . 2 s ⊆ ℕ0s
2 nnn0sd.1 . 2 (𝜑𝐴 ∈ ℕs)
31, 2sselid 4006 1 (𝜑𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  0scnn0s 28336  scnns 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-nns 28339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator