MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucliddivs Structured version   Visualization version   GIF version

Theorem eucliddivs 28317
Description: Euclid's division lemma for surreal numbers. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
eucliddivs ((𝐴 ∈ ℕ0s𝐵 ∈ ℕs) → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
Distinct variable groups:   𝐴,𝑝,𝑞   𝐵,𝑝,𝑞

Proof of Theorem eucliddivs
Dummy variables 𝑎 𝑚 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . . . . 6 (𝑚 = 0s → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 0s = ((𝐵 ·s 𝑝) +s 𝑞)))
21anbi1d 631 . . . . 5 (𝑚 = 0s → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
322rexbidv 3206 . . . 4 (𝑚 = 0s → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
43imbi2d 340 . . 3 (𝑚 = 0s → ((𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))))
5 eqeq1 2739 . . . . . 6 (𝑚 = 𝑎 → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 𝑎 = ((𝐵 ·s 𝑝) +s 𝑞)))
65anbi1d 631 . . . . 5 (𝑚 = 𝑎 → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
762rexbidv 3206 . . . 4 (𝑚 = 𝑎 → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
87imbi2d 340 . . 3 (𝑚 = 𝑎 → ((𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))))
9 eqeq1 2739 . . . . . . 7 (𝑚 = (𝑎 +s 1s ) → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞)))
109anbi1d 631 . . . . . 6 (𝑚 = (𝑎 +s 1s ) → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
11102rexbidv 3206 . . . . 5 (𝑚 = (𝑎 +s 1s ) → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
12 oveq2 7413 . . . . . . . . 9 (𝑝 = 𝑟 → (𝐵 ·s 𝑝) = (𝐵 ·s 𝑟))
1312oveq1d 7420 . . . . . . . 8 (𝑝 = 𝑟 → ((𝐵 ·s 𝑝) +s 𝑞) = ((𝐵 ·s 𝑟) +s 𝑞))
1413eqeq2d 2746 . . . . . . 7 (𝑝 = 𝑟 → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞)))
1514anbi1d 631 . . . . . 6 (𝑝 = 𝑟 → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ∧ 𝑞 <s 𝐵)))
16 oveq2 7413 . . . . . . . 8 (𝑞 = 𝑠 → ((𝐵 ·s 𝑟) +s 𝑞) = ((𝐵 ·s 𝑟) +s 𝑠))
1716eqeq2d 2746 . . . . . . 7 (𝑞 = 𝑠 → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠)))
18 breq1 5122 . . . . . . 7 (𝑞 = 𝑠 → (𝑞 <s 𝐵𝑠 <s 𝐵))
1917, 18anbi12d 632 . . . . . 6 (𝑞 = 𝑠 → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
2015, 19cbvrex2vw 3225 . . . . 5 (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
2111, 20bitrdi 287 . . . 4 (𝑚 = (𝑎 +s 1s ) → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
2221imbi2d 340 . . 3 (𝑚 = (𝑎 +s 1s ) → ((𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))))
23 eqeq1 2739 . . . . . 6 (𝑚 = 𝐴 → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 𝐴 = ((𝐵 ·s 𝑝) +s 𝑞)))
2423anbi1d 631 . . . . 5 (𝑚 = 𝐴 → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
25242rexbidv 3206 . . . 4 (𝑚 = 𝐴 → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
2625imbi2d 340 . . 3 (𝑚 = 𝐴 → ((𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))))
27 nnsno 28269 . . . . . . 7 (𝐵 ∈ ℕs𝐵 No )
28 muls01 28067 . . . . . . 7 (𝐵 No → (𝐵 ·s 0s ) = 0s )
2927, 28syl 17 . . . . . 6 (𝐵 ∈ ℕs → (𝐵 ·s 0s ) = 0s )
3029oveq1d 7420 . . . . 5 (𝐵 ∈ ℕs → ((𝐵 ·s 0s ) +s 0s ) = ( 0s +s 0s ))
31 0sno 27790 . . . . . 6 0s No
32 addslid 27927 . . . . . 6 ( 0s No → ( 0s +s 0s ) = 0s )
3331, 32ax-mp 5 . . . . 5 ( 0s +s 0s ) = 0s
3430, 33eqtr2di 2787 . . . 4 (𝐵 ∈ ℕs → 0s = ((𝐵 ·s 0s ) +s 0s ))
35 nnsgt0 28283 . . . 4 (𝐵 ∈ ℕs → 0s <s 𝐵)
36 0n0s 28274 . . . . 5 0s ∈ ℕ0s
37 oveq2 7413 . . . . . . . . 9 (𝑝 = 0s → (𝐵 ·s 𝑝) = (𝐵 ·s 0s ))
3837oveq1d 7420 . . . . . . . 8 (𝑝 = 0s → ((𝐵 ·s 𝑝) +s 𝑞) = ((𝐵 ·s 0s ) +s 𝑞))
3938eqeq2d 2746 . . . . . . 7 (𝑝 = 0s → ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 0s = ((𝐵 ·s 0s ) +s 𝑞)))
4039anbi1d 631 . . . . . 6 (𝑝 = 0s → (( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s 0s ) +s 𝑞) ∧ 𝑞 <s 𝐵)))
41 oveq2 7413 . . . . . . . 8 (𝑞 = 0s → ((𝐵 ·s 0s ) +s 𝑞) = ((𝐵 ·s 0s ) +s 0s ))
4241eqeq2d 2746 . . . . . . 7 (𝑞 = 0s → ( 0s = ((𝐵 ·s 0s ) +s 𝑞) ↔ 0s = ((𝐵 ·s 0s ) +s 0s )))
43 breq1 5122 . . . . . . 7 (𝑞 = 0s → (𝑞 <s 𝐵 ↔ 0s <s 𝐵))
4442, 43anbi12d 632 . . . . . 6 (𝑞 = 0s → (( 0s = ((𝐵 ·s 0s ) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s 0s ) +s 0s ) ∧ 0s <s 𝐵)))
4540, 44rspc2ev 3614 . . . . 5 (( 0s ∈ ℕ0s ∧ 0s ∈ ℕ0s ∧ ( 0s = ((𝐵 ·s 0s ) +s 0s ) ∧ 0s <s 𝐵)) → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
4636, 36, 45mp3an12 1453 . . . 4 (( 0s = ((𝐵 ·s 0s ) +s 0s ) ∧ 0s <s 𝐵) → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
4734, 35, 46syl2anc 584 . . 3 (𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
48 simprr 772 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝑞 ∈ ℕ0s)
49 simplr 768 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝐵 ∈ ℕs)
50 nnm1n0s 28316 . . . . . . . . . . . 12 (𝐵 ∈ ℕs → (𝐵 -s 1s ) ∈ ℕ0s)
5149, 50syl 17 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 -s 1s ) ∈ ℕ0s)
52 n0sleltp1 28308 . . . . . . . . . . 11 ((𝑞 ∈ ℕ0s ∧ (𝐵 -s 1s ) ∈ ℕ0s) → (𝑞 ≤s (𝐵 -s 1s ) ↔ 𝑞 <s ((𝐵 -s 1s ) +s 1s )))
5348, 51, 52syl2anc 584 . . . . . . . . . 10 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 ≤s (𝐵 -s 1s ) ↔ 𝑞 <s ((𝐵 -s 1s ) +s 1s )))
5448n0snod 28270 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝑞 No )
5551n0snod 28270 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 -s 1s ) ∈ No )
56 sleloe 27718 . . . . . . . . . . 11 ((𝑞 No ∧ (𝐵 -s 1s ) ∈ No ) → (𝑞 ≤s (𝐵 -s 1s ) ↔ (𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s ))))
5754, 55, 56syl2anc 584 . . . . . . . . . 10 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 ≤s (𝐵 -s 1s ) ↔ (𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s ))))
5849nnsnod 28271 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝐵 No )
59 1sno 27791 . . . . . . . . . . . 12 1s No
60 npcans 28031 . . . . . . . . . . . 12 ((𝐵 No ∧ 1s No ) → ((𝐵 -s 1s ) +s 1s ) = 𝐵)
6158, 59, 60sylancl 586 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝐵 -s 1s ) +s 1s ) = 𝐵)
6261breq2d 5131 . . . . . . . . . 10 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 <s ((𝐵 -s 1s ) +s 1s ) ↔ 𝑞 <s 𝐵))
6353, 57, 623bitr3rd 310 . . . . . . . . 9 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 <s 𝐵 ↔ (𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s ))))
64 simplrl 776 . . . . . . . . . . . 12 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → 𝑝 ∈ ℕ0s)
65 simplrr 777 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → 𝑞 ∈ ℕ0s)
66 peano2n0s 28275 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0s → (𝑞 +s 1s ) ∈ ℕ0s)
6765, 66syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → (𝑞 +s 1s ) ∈ ℕ0s)
6849nnn0sd 28273 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝐵 ∈ ℕ0s)
69 simprl 770 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝑝 ∈ ℕ0s)
70 n0mulscl 28289 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℕ0s𝑝 ∈ ℕ0s) → (𝐵 ·s 𝑝) ∈ ℕ0s)
7168, 69, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 ·s 𝑝) ∈ ℕ0s)
7271n0snod 28270 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 ·s 𝑝) ∈ No )
7359a1i 11 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 1s No )
7472, 54, 73addsassd 27965 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s )))
7574adantr 480 . . . . . . . . . . . 12 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s )))
7654, 73, 58sltaddsubd 28047 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝑞 +s 1s ) <s 𝐵𝑞 <s (𝐵 -s 1s )))
7776biimpar 477 . . . . . . . . . . . 12 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → (𝑞 +s 1s ) <s 𝐵)
78 oveq2 7413 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → (𝐵 ·s 𝑟) = (𝐵 ·s 𝑝))
7978oveq1d 7420 . . . . . . . . . . . . . . 15 (𝑟 = 𝑝 → ((𝐵 ·s 𝑟) +s 𝑠) = ((𝐵 ·s 𝑝) +s 𝑠))
8079eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑟 = 𝑝 → ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠)))
8180anbi1d 631 . . . . . . . . . . . . 13 (𝑟 = 𝑝 → (((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠) ∧ 𝑠 <s 𝐵)))
82 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑠 = (𝑞 +s 1s ) → ((𝐵 ·s 𝑝) +s 𝑠) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s )))
8382eqeq2d 2746 . . . . . . . . . . . . . 14 (𝑠 = (𝑞 +s 1s ) → ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s ))))
84 breq1 5122 . . . . . . . . . . . . . 14 (𝑠 = (𝑞 +s 1s ) → (𝑠 <s 𝐵 ↔ (𝑞 +s 1s ) <s 𝐵))
8583, 84anbi12d 632 . . . . . . . . . . . . 13 (𝑠 = (𝑞 +s 1s ) → (((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s )) ∧ (𝑞 +s 1s ) <s 𝐵)))
8681, 85rspc2ev 3614 . . . . . . . . . . . 12 ((𝑝 ∈ ℕ0s ∧ (𝑞 +s 1s ) ∈ ℕ0s ∧ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s )) ∧ (𝑞 +s 1s ) <s 𝐵)) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
8764, 67, 75, 77, 86syl112anc 1376 . . . . . . . . . . 11 ((((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) ∧ 𝑞 <s (𝐵 -s 1s )) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
8887ex 412 . . . . . . . . . 10 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 <s (𝐵 -s 1s ) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
89 peano2n0s 28275 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0s → (𝑝 +s 1s ) ∈ ℕ0s)
9069, 89syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑝 +s 1s ) ∈ ℕ0s)
9158mulsridd 28069 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 ·s 1s ) = 𝐵)
9291oveq2d 7421 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝐵 ·s 𝑝) +s (𝐵 ·s 1s )) = ((𝐵 ·s 𝑝) +s 𝐵))
9369n0snod 28270 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 𝑝 No )
9458, 93, 73addsdid 28111 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 ·s (𝑝 +s 1s )) = ((𝐵 ·s 𝑝) +s (𝐵 ·s 1s )))
9561oveq2d 7421 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝐵 ·s 𝑝) +s ((𝐵 -s 1s ) +s 1s )) = ((𝐵 ·s 𝑝) +s 𝐵))
9692, 94, 953eqtr4rd 2781 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝐵 ·s 𝑝) +s ((𝐵 -s 1s ) +s 1s )) = (𝐵 ·s (𝑝 +s 1s )))
9772, 55, 73addsassd 27965 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑝) +s ((𝐵 -s 1s ) +s 1s )))
98 peano2no 27943 . . . . . . . . . . . . . . . 16 (𝑝 No → (𝑝 +s 1s ) ∈ No )
9993, 98syl 17 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑝 +s 1s ) ∈ No )
10058, 99mulscld 28090 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝐵 ·s (𝑝 +s 1s )) ∈ No )
101100addsridd 27924 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝐵 ·s (𝑝 +s 1s )) +s 0s ) = (𝐵 ·s (𝑝 +s 1s )))
10296, 97, 1013eqtr4d 2780 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s ))
10349, 35syl 17 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → 0s <s 𝐵)
104 oveq2 7413 . . . . . . . . . . . . . . . . 17 (𝑟 = (𝑝 +s 1s ) → (𝐵 ·s 𝑟) = (𝐵 ·s (𝑝 +s 1s )))
105104oveq1d 7420 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑝 +s 1s ) → ((𝐵 ·s 𝑟) +s 𝑠) = ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠))
106105eqeq2d 2746 . . . . . . . . . . . . . . 15 (𝑟 = (𝑝 +s 1s ) → ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠)))
107106anbi1d 631 . . . . . . . . . . . . . 14 (𝑟 = (𝑝 +s 1s ) → (((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠) ∧ 𝑠 <s 𝐵)))
108 oveq2 7413 . . . . . . . . . . . . . . . 16 (𝑠 = 0s → ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s ))
109108eqeq2d 2746 . . . . . . . . . . . . . . 15 (𝑠 = 0s → ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s )))
110 breq1 5122 . . . . . . . . . . . . . . 15 (𝑠 = 0s → (𝑠 <s 𝐵 ↔ 0s <s 𝐵))
111109, 110anbi12d 632 . . . . . . . . . . . . . 14 (𝑠 = 0s → (((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s ) ∧ 0s <s 𝐵)))
112107, 111rspc2ev 3614 . . . . . . . . . . . . 13 (((𝑝 +s 1s ) ∈ ℕ0s ∧ 0s ∈ ℕ0s ∧ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s ) ∧ 0s <s 𝐵)) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
11336, 112mp3an2 1451 . . . . . . . . . . . 12 (((𝑝 +s 1s ) ∈ ℕ0s ∧ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s 0s ) ∧ 0s <s 𝐵)) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
11490, 102, 103, 113syl12anc 836 . . . . . . . . . . 11 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))
115 oveq2 7413 . . . . . . . . . . . . . . 15 (𝑞 = (𝐵 -s 1s ) → ((𝐵 ·s 𝑝) +s 𝑞) = ((𝐵 ·s 𝑝) +s (𝐵 -s 1s )))
116115oveq1d 7420 . . . . . . . . . . . . . 14 (𝑞 = (𝐵 -s 1s ) → (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ))
117116eqeq1d 2737 . . . . . . . . . . . . 13 (𝑞 = (𝐵 -s 1s ) → ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠)))
118117anbi1d 631 . . . . . . . . . . . 12 (𝑞 = (𝐵 -s 1s ) → (((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
1191182rexbidv 3206 . . . . . . . . . . 11 (𝑞 = (𝐵 -s 1s ) → (∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s )) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
120114, 119syl5ibrcom 247 . . . . . . . . . 10 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 = (𝐵 -s 1s ) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
12188, 120jaod 859 . . . . . . . . 9 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s )) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
12263, 121sylbid 240 . . . . . . . 8 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
123 oveq1 7412 . . . . . . . . . . . 12 (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (𝑎 +s 1s ) = (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ))
124123eqeq1d 2737 . . . . . . . . . . 11 (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠)))
125124anbi1d 631 . . . . . . . . . 10 (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
1261252rexbidv 3206 . . . . . . . . 9 (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
127126imbi2d 340 . . . . . . . 8 (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → ((𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) ↔ (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))))
128122, 127syl5ibrcom 247 . . . . . . 7 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))))
129128impd 410 . . . . . 6 (((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) ∧ (𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s)) → ((𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
130129rexlimdvva 3198 . . . . 5 ((𝑎 ∈ ℕ0s𝐵 ∈ ℕs) → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))
131130ex 412 . . . 4 (𝑎 ∈ ℕ0s → (𝐵 ∈ ℕs → (∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))))
132131a2d 29 . . 3 (𝑎 ∈ ℕ0s → ((𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) → (𝐵 ∈ ℕs → ∃𝑟 ∈ ℕ0s𝑠 ∈ ℕ0s ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))))
1334, 8, 22, 26, 47, 132n0sind 28277 . 2 (𝐴 ∈ ℕ0s → (𝐵 ∈ ℕs → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))
134133imp 406 1 ((𝐴 ∈ ℕ0s𝐵 ∈ ℕs) → ∃𝑝 ∈ ℕ0s𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  (class class class)co 7405   No csur 27603   <s cslt 27604   ≤s csle 27708   0s c0s 27786   1s c1s 27787   +s cadds 27918   -s csubs 27978   ·s cmuls 28061  0scnn0s 28258  scnns 28259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-n0s 28260  df-nns 28261
This theorem is referenced by:  zs12ge0  28394
  Copyright terms: Public domain W3C validator