| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2739 |
. . . . . 6
⊢ (𝑚 = 0s → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 0s = ((𝐵 ·s 𝑝) +s 𝑞))) |
| 2 | 1 | anbi1d 631 |
. . . . 5
⊢ (𝑚 = 0s → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 3 | 2 | 2rexbidv 3206 |
. . . 4
⊢ (𝑚 = 0s →
(∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s (
0s = ((𝐵
·s 𝑝)
+s 𝑞) ∧
𝑞 <s 𝐵))) |
| 4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑚 = 0s → ((𝐵 ∈ ℕs
→ ∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs →
∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s ( 0s
= ((𝐵 ·s
𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))) |
| 5 | | eqeq1 2739 |
. . . . . 6
⊢ (𝑚 = 𝑎 → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 𝑎 = ((𝐵 ·s 𝑝) +s 𝑞))) |
| 6 | 5 | anbi1d 631 |
. . . . 5
⊢ (𝑚 = 𝑎 → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 7 | 6 | 2rexbidv 3206 |
. . . 4
⊢ (𝑚 = 𝑎 → (∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑚 = 𝑎 → ((𝐵 ∈ ℕs →
∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs →
∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))) |
| 9 | | eqeq1 2739 |
. . . . . . 7
⊢ (𝑚 = (𝑎 +s 1s ) → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞))) |
| 10 | 9 | anbi1d 631 |
. . . . . 6
⊢ (𝑚 = (𝑎 +s 1s ) → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 11 | 10 | 2rexbidv 3206 |
. . . . 5
⊢ (𝑚 = (𝑎 +s 1s ) →
(∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑝)
+s 𝑞) ∧
𝑞 <s 𝐵))) |
| 12 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑝 = 𝑟 → (𝐵 ·s 𝑝) = (𝐵 ·s 𝑟)) |
| 13 | 12 | oveq1d 7420 |
. . . . . . . 8
⊢ (𝑝 = 𝑟 → ((𝐵 ·s 𝑝) +s 𝑞) = ((𝐵 ·s 𝑟) +s 𝑞)) |
| 14 | 13 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑝 = 𝑟 → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞))) |
| 15 | 14 | anbi1d 631 |
. . . . . 6
⊢ (𝑝 = 𝑟 → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 16 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑞 = 𝑠 → ((𝐵 ·s 𝑟) +s 𝑞) = ((𝐵 ·s 𝑟) +s 𝑠)) |
| 17 | 16 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑞 = 𝑠 → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ↔ (𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠))) |
| 18 | | breq1 5122 |
. . . . . . 7
⊢ (𝑞 = 𝑠 → (𝑞 <s 𝐵 ↔ 𝑠 <s 𝐵)) |
| 19 | 17, 18 | anbi12d 632 |
. . . . . 6
⊢ (𝑞 = 𝑠 → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 20 | 15, 19 | cbvrex2vw 3225 |
. . . . 5
⊢
(∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s ((𝑎 +s 1s ) =
((𝐵 ·s
𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵)) |
| 21 | 11, 20 | bitrdi 287 |
. . . 4
⊢ (𝑚 = (𝑎 +s 1s ) →
(∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵))) |
| 22 | 21 | imbi2d 340 |
. . 3
⊢ (𝑚 = (𝑎 +s 1s ) → ((𝐵 ∈ ℕs
→ ∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs →
∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((𝑎 +s 1s ) =
((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))) |
| 23 | | eqeq1 2739 |
. . . . . 6
⊢ (𝑚 = 𝐴 → (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ↔ 𝐴 = ((𝐵 ·s 𝑝) +s 𝑞))) |
| 24 | 23 | anbi1d 631 |
. . . . 5
⊢ (𝑚 = 𝐴 → ((𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 25 | 24 | 2rexbidv 3206 |
. . . 4
⊢ (𝑚 = 𝐴 → (∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 26 | 25 | imbi2d 340 |
. . 3
⊢ (𝑚 = 𝐴 → ((𝐵 ∈ ℕs →
∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝑚 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) ↔ (𝐵 ∈ ℕs →
∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s (𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)))) |
| 27 | | nnsno 28269 |
. . . . . . 7
⊢ (𝐵 ∈ ℕs
→ 𝐵 ∈ No ) |
| 28 | | muls01 28067 |
. . . . . . 7
⊢ (𝐵 ∈
No → (𝐵
·s 0s ) = 0s ) |
| 29 | 27, 28 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ ℕs
→ (𝐵
·s 0s ) = 0s ) |
| 30 | 29 | oveq1d 7420 |
. . . . 5
⊢ (𝐵 ∈ ℕs
→ ((𝐵
·s 0s ) +s 0s ) = (
0s +s 0s )) |
| 31 | | 0sno 27790 |
. . . . . 6
⊢
0s ∈ No |
| 32 | | addslid 27927 |
. . . . . 6
⊢ (
0s ∈ No → ( 0s
+s 0s ) = 0s ) |
| 33 | 31, 32 | ax-mp 5 |
. . . . 5
⊢ (
0s +s 0s ) = 0s |
| 34 | 30, 33 | eqtr2di 2787 |
. . . 4
⊢ (𝐵 ∈ ℕs
→ 0s = ((𝐵
·s 0s ) +s 0s
)) |
| 35 | | nnsgt0 28283 |
. . . 4
⊢ (𝐵 ∈ ℕs
→ 0s <s 𝐵) |
| 36 | | 0n0s 28274 |
. . . . 5
⊢
0s ∈ ℕ0s |
| 37 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑝 = 0s → (𝐵 ·s 𝑝) = (𝐵 ·s 0s
)) |
| 38 | 37 | oveq1d 7420 |
. . . . . . . 8
⊢ (𝑝 = 0s → ((𝐵 ·s 𝑝) +s 𝑞) = ((𝐵 ·s 0s )
+s 𝑞)) |
| 39 | 38 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑝 = 0s → (
0s = ((𝐵
·s 𝑝)
+s 𝑞) ↔
0s = ((𝐵
·s 0s ) +s 𝑞))) |
| 40 | 39 | anbi1d 631 |
. . . . . 6
⊢ (𝑝 = 0s → ((
0s = ((𝐵
·s 𝑝)
+s 𝑞) ∧
𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s
0s ) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 41 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑞 = 0s → ((𝐵 ·s
0s ) +s 𝑞) = ((𝐵 ·s 0s )
+s 0s )) |
| 42 | 41 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑞 = 0s → (
0s = ((𝐵
·s 0s ) +s 𝑞) ↔ 0s = ((𝐵 ·s 0s )
+s 0s ))) |
| 43 | | breq1 5122 |
. . . . . . 7
⊢ (𝑞 = 0s → (𝑞 <s 𝐵 ↔ 0s <s 𝐵)) |
| 44 | 42, 43 | anbi12d 632 |
. . . . . 6
⊢ (𝑞 = 0s → ((
0s = ((𝐵
·s 0s ) +s 𝑞) ∧ 𝑞 <s 𝐵) ↔ ( 0s = ((𝐵 ·s
0s ) +s 0s ) ∧ 0s <s 𝐵))) |
| 45 | 40, 44 | rspc2ev 3614 |
. . . . 5
⊢ ((
0s ∈ ℕ0s ∧ 0s ∈
ℕ0s ∧ ( 0s = ((𝐵 ·s 0s )
+s 0s ) ∧ 0s <s 𝐵)) → ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s (
0s = ((𝐵
·s 𝑝)
+s 𝑞) ∧
𝑞 <s 𝐵)) |
| 46 | 36, 36, 45 | mp3an12 1453 |
. . . 4
⊢ ((
0s = ((𝐵
·s 0s ) +s 0s ) ∧
0s <s 𝐵)
→ ∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s ( 0s
= ((𝐵 ·s
𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) |
| 47 | 34, 35, 46 | syl2anc 584 |
. . 3
⊢ (𝐵 ∈ ℕs
→ ∃𝑝 ∈
ℕ0s ∃𝑞 ∈ ℕ0s ( 0s
= ((𝐵 ·s
𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) |
| 48 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝑞 ∈
ℕ0s) |
| 49 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝐵 ∈
ℕs) |
| 50 | | nnm1n0s 28316 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕs
→ (𝐵 -s
1s ) ∈ ℕ0s) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵 -s
1s ) ∈ ℕ0s) |
| 52 | | n0sleltp1 28308 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ0s
∧ (𝐵 -s
1s ) ∈ ℕ0s) → (𝑞 ≤s (𝐵 -s 1s ) ↔ 𝑞 <s ((𝐵 -s 1s ) +s
1s ))) |
| 53 | 48, 51, 52 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 ≤s (𝐵 -s 1s )
↔ 𝑞 <s ((𝐵 -s 1s )
+s 1s ))) |
| 54 | 48 | n0snod 28270 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝑞 ∈ No ) |
| 55 | 51 | n0snod 28270 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵 -s
1s ) ∈ No ) |
| 56 | | sleloe 27718 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈
No ∧ (𝐵
-s 1s ) ∈ No ) →
(𝑞 ≤s (𝐵 -s 1s ) ↔ (𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s
)))) |
| 57 | 54, 55, 56 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 ≤s (𝐵 -s 1s )
↔ (𝑞 <s (𝐵 -s 1s )
∨ 𝑞 = (𝐵 -s 1s
)))) |
| 58 | 49 | nnsnod 28271 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝐵 ∈ No ) |
| 59 | | 1sno 27791 |
. . . . . . . . . . . 12
⊢
1s ∈ No |
| 60 | | npcans 28031 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈
No ∧ 1s ∈ No ) →
((𝐵 -s
1s ) +s 1s ) = 𝐵) |
| 61 | 58, 59, 60 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝐵 -s
1s ) +s 1s ) = 𝐵) |
| 62 | 61 | breq2d 5131 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 <s ((𝐵 -s 1s )
+s 1s ) ↔ 𝑞 <s 𝐵)) |
| 63 | 53, 57, 62 | 3bitr3rd 310 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 <s 𝐵 ↔ (𝑞 <s (𝐵 -s 1s ) ∨ 𝑞 = (𝐵 -s 1s
)))) |
| 64 | | simplrl 776 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ 𝑝 ∈
ℕ0s) |
| 65 | | simplrr 777 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ 𝑞 ∈
ℕ0s) |
| 66 | | peano2n0s 28275 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ0s
→ (𝑞 +s
1s ) ∈ ℕ0s) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ (𝑞 +s
1s ) ∈ ℕ0s) |
| 68 | 49 | nnn0sd 28273 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝐵 ∈
ℕ0s) |
| 69 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝑝 ∈
ℕ0s) |
| 70 | | n0mulscl 28289 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ ℕ0s
∧ 𝑝 ∈
ℕ0s) → (𝐵 ·s 𝑝) ∈
ℕ0s) |
| 71 | 68, 69, 70 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵
·s 𝑝)
∈ ℕ0s) |
| 72 | 71 | n0snod 28270 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵
·s 𝑝)
∈ No ) |
| 73 | 59 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 1s ∈ No ) |
| 74 | 72, 54, 73 | addsassd 27965 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (((𝐵
·s 𝑝)
+s 𝑞)
+s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s
))) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ (((𝐵
·s 𝑝)
+s 𝑞)
+s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s
))) |
| 76 | 54, 73, 58 | sltaddsubd 28047 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝑞 +s
1s ) <s 𝐵
↔ 𝑞 <s (𝐵 -s 1s
))) |
| 77 | 76 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ (𝑞 +s
1s ) <s 𝐵) |
| 78 | | oveq2 7413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑝 → (𝐵 ·s 𝑟) = (𝐵 ·s 𝑝)) |
| 79 | 78 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑝 → ((𝐵 ·s 𝑟) +s 𝑠) = ((𝐵 ·s 𝑝) +s 𝑠)) |
| 80 | 79 | eqeq2d 2746 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑝 → ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠))) |
| 81 | 80 | anbi1d 631 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑝 → (((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 82 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑞 +s 1s ) → ((𝐵 ·s 𝑝) +s 𝑠) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s
))) |
| 83 | 82 | eqeq2d 2746 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑞 +s 1s ) →
((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑝) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s
)))) |
| 84 | | breq1 5122 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑞 +s 1s ) → (𝑠 <s 𝐵 ↔ (𝑞 +s 1s ) <s 𝐵)) |
| 85 | 83, 84 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑞 +s 1s ) →
(((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑝) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s ))
∧ (𝑞 +s
1s ) <s 𝐵))) |
| 86 | 81, 85 | rspc2ev 3614 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℕ0s
∧ (𝑞 +s
1s ) ∈ ℕ0s ∧ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑝) +s (𝑞 +s 1s ))
∧ (𝑞 +s
1s ) <s 𝐵))
→ ∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) |
| 87 | 64, 67, 75, 77, 86 | syl112anc 1376 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
∧ 𝑞 <s (𝐵 -s 1s ))
→ ∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) |
| 88 | 87 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 <s (𝐵 -s 1s )
→ ∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 89 | | peano2n0s 28275 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ0s
→ (𝑝 +s
1s ) ∈ ℕ0s) |
| 90 | 69, 89 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑝 +s
1s ) ∈ ℕ0s) |
| 91 | 58 | mulsridd 28069 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵
·s 1s ) = 𝐵) |
| 92 | 91 | oveq2d 7421 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝐵
·s 𝑝)
+s (𝐵
·s 1s )) = ((𝐵 ·s 𝑝) +s 𝐵)) |
| 93 | 69 | n0snod 28270 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 𝑝 ∈ No ) |
| 94 | 58, 93, 73 | addsdid 28111 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵
·s (𝑝
+s 1s )) = ((𝐵 ·s 𝑝) +s (𝐵 ·s 1s
))) |
| 95 | 61 | oveq2d 7421 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝐵
·s 𝑝)
+s ((𝐵
-s 1s ) +s 1s )) = ((𝐵 ·s 𝑝) +s 𝐵)) |
| 96 | 92, 94, 95 | 3eqtr4rd 2781 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝐵
·s 𝑝)
+s ((𝐵
-s 1s ) +s 1s )) = (𝐵 ·s (𝑝 +s 1s
))) |
| 97 | 72, 55, 73 | addsassd 27965 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (((𝐵
·s 𝑝)
+s (𝐵
-s 1s )) +s 1s ) = ((𝐵 ·s 𝑝) +s ((𝐵 -s 1s )
+s 1s ))) |
| 98 | | peano2no 27943 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈
No → (𝑝
+s 1s ) ∈ No
) |
| 99 | 93, 98 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑝 +s
1s ) ∈ No ) |
| 100 | 58, 99 | mulscld 28090 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝐵
·s (𝑝
+s 1s )) ∈ No
) |
| 101 | 100 | addsridd 27924 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝐵
·s (𝑝
+s 1s )) +s 0s ) = (𝐵 ·s (𝑝 +s 1s
))) |
| 102 | 96, 97, 101 | 3eqtr4d 2780 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (((𝐵
·s 𝑝)
+s (𝐵
-s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s ))
+s 0s )) |
| 103 | 49, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ 0s <s 𝐵) |
| 104 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = (𝑝 +s 1s ) → (𝐵 ·s 𝑟) = (𝐵 ·s (𝑝 +s 1s
))) |
| 105 | 104 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = (𝑝 +s 1s ) → ((𝐵 ·s 𝑟) +s 𝑠) = ((𝐵 ·s (𝑝 +s 1s )) +s
𝑠)) |
| 106 | 105 | eqeq2d 2746 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑝 +s 1s ) →
((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
𝑠))) |
| 107 | 106 | anbi1d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑝 +s 1s ) →
(((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
𝑠) ∧ 𝑠 <s 𝐵))) |
| 108 | | oveq2 7413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 0s → ((𝐵 ·s (𝑝 +s 1s ))
+s 𝑠) = ((𝐵 ·s (𝑝 +s 1s ))
+s 0s )) |
| 109 | 108 | eqeq2d 2746 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 0s →
((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
0s ))) |
| 110 | | breq1 5122 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 0s → (𝑠 <s 𝐵 ↔ 0s <s 𝐵)) |
| 111 | 109, 110 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 0s →
(((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
0s ) ∧ 0s <s 𝐵))) |
| 112 | 107, 111 | rspc2ev 3614 |
. . . . . . . . . . . . 13
⊢ (((𝑝 +s 1s )
∈ ℕ0s ∧ 0s ∈ ℕ0s
∧ ((((𝐵
·s 𝑝)
+s (𝐵
-s 1s )) +s 1s ) = ((𝐵 ·s (𝑝 +s 1s ))
+s 0s ) ∧ 0s <s 𝐵)) → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) |
| 113 | 36, 112 | mp3an2 1451 |
. . . . . . . . . . . 12
⊢ (((𝑝 +s 1s )
∈ ℕ0s ∧ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s (𝑝 +s 1s )) +s
0s ) ∧ 0s <s 𝐵)) → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) |
| 114 | 90, 102, 103, 113 | syl12anc 836 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)) |
| 115 | | oveq2 7413 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = (𝐵 -s 1s ) →
((𝐵 ·s
𝑝) +s 𝑞) = ((𝐵 ·s 𝑝) +s (𝐵 -s 1s
))) |
| 116 | 115 | oveq1d 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = (𝐵 -s 1s ) →
(((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= (((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s )) |
| 117 | 116 | eqeq1d 2737 |
. . . . . . . . . . . . 13
⊢ (𝑞 = (𝐵 -s 1s ) →
((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠))) |
| 118 | 117 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑞 = (𝐵 -s 1s ) →
(((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 119 | 118 | 2rexbidv 3206 |
. . . . . . . . . . 11
⊢ (𝑞 = (𝐵 -s 1s ) →
(∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((((𝐵 ·s
𝑝) +s (𝐵 -s 1s ))
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 120 | 114, 119 | syl5ibrcom 247 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 = (𝐵 -s 1s )
→ ∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 121 | 88, 120 | jaod 859 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝑞 <s (𝐵 -s 1s )
∨ 𝑞 = (𝐵 -s 1s )) →
∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 122 | 63, 121 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s
∃𝑠 ∈
ℕ0s ((((𝐵
·s 𝑝)
+s 𝑞)
+s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 123 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (𝑎 +s 1s ) = (((𝐵 ·s 𝑝) +s 𝑞) +s 1s
)) |
| 124 | 123 | eqeq1d 2737 |
. . . . . . . . . . 11
⊢ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → ((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ↔ (((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠))) |
| 125 | 124 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (((𝑎 +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵) ↔ ((((𝐵 ·s 𝑝) +s 𝑞) +s 1s ) = ((𝐵 ·s 𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 126 | 125 | 2rexbidv 3206 |
. . . . . . . . 9
⊢ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵) ↔ ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵))) |
| 127 | 126 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → ((𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵)) ↔ (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((((𝐵 ·s
𝑝) +s 𝑞) +s 1s )
= ((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))) |
| 128 | 122, 127 | syl5ibrcom 247 |
. . . . . . 7
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ (𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) → (𝑞 <s 𝐵 → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵)))) |
| 129 | 128 | impd 410 |
. . . . . 6
⊢ (((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) ∧ (𝑝 ∈ ℕ0s ∧ 𝑞 ∈ ℕ0s))
→ ((𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵))) |
| 130 | 129 | rexlimdvva 3198 |
. . . . 5
⊢ ((𝑎 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) → (∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵))) |
| 131 | 130 | ex 412 |
. . . 4
⊢ (𝑎 ∈ ℕ0s
→ (𝐵 ∈
ℕs → (∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵) → ∃𝑟 ∈ ℕ0s ∃𝑠 ∈ ℕ0s
((𝑎 +s
1s ) = ((𝐵
·s 𝑟)
+s 𝑠) ∧
𝑠 <s 𝐵)))) |
| 132 | 131 | a2d 29 |
. . 3
⊢ (𝑎 ∈ ℕ0s
→ ((𝐵 ∈
ℕs → ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝑎 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) → (𝐵 ∈ ℕs →
∃𝑟 ∈
ℕ0s ∃𝑠 ∈ ℕ0s ((𝑎 +s 1s ) =
((𝐵 ·s
𝑟) +s 𝑠) ∧ 𝑠 <s 𝐵)))) |
| 133 | 4, 8, 22, 26, 47, 132 | n0sind 28277 |
. 2
⊢ (𝐴 ∈ ℕ0s
→ (𝐵 ∈
ℕs → ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵))) |
| 134 | 133 | imp 406 |
1
⊢ ((𝐴 ∈ ℕ0s
∧ 𝐵 ∈
ℕs) → ∃𝑝 ∈ ℕ0s ∃𝑞 ∈ ℕ0s
(𝐴 = ((𝐵 ·s 𝑝) +s 𝑞) ∧ 𝑞 <s 𝐵)) |