MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0s Structured version   Visualization version   GIF version

Theorem nnn0s 28227
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
nnn0s (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)

Proof of Theorem nnn0s
StepHypRef Expression
1 nnssn0s 28221 . 2 s ⊆ ℕ0s
21sseli 3945 1 (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  0scnn0s 28213  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-nns 28216
This theorem is referenced by:  elzn0s  28293  eln0zs  28295  zseo  28315  addhalfcut  28341  zs12ge0  28349
  Copyright terms: Public domain W3C validator