MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0s Structured version   Visualization version   GIF version

Theorem nnn0s 28254
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
nnn0s (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)

Proof of Theorem nnn0s
StepHypRef Expression
1 nnssn0s 28248 . 2 s ⊆ ℕ0s
21sseli 3930 1 (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  0scnn0s 28240  scnns 28241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-ss 3919  df-nns 28243
This theorem is referenced by:  elzn0s  28320  eln0zs  28322  zseo  28343  addhalfcut  28377  zs12ge0  28391
  Copyright terms: Public domain W3C validator