MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0s Structured version   Visualization version   GIF version

Theorem nnn0s 28277
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
nnn0s (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)

Proof of Theorem nnn0s
StepHypRef Expression
1 nnssn0s 28271 . 2 s ⊆ ℕ0s
21sseli 3959 1 (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  0scnn0s 28263  scnns 28264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-ss 3948  df-nns 28266
This theorem is referenced by:  elzn0s  28343  eln0zs  28345  zseo  28365  addhalfcut  28391  zs12ge0  28399
  Copyright terms: Public domain W3C validator