MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnn0s Structured version   Visualization version   GIF version

Theorem nnn0s 28249
Description: A positive surreal integer is a non-negative surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
nnn0s (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)

Proof of Theorem nnn0s
StepHypRef Expression
1 nnssn0s 28243 . 2 s ⊆ ℕ0s
21sseli 3972 1 (𝐴 ∈ ℕs𝐴 ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  0scnn0s 28235  scnns 28236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-ss 3961  df-nns 28238
This theorem is referenced by:  elzn0s  28291
  Copyright terms: Public domain W3C validator