MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0n0s Structured version   Visualization version   GIF version

Theorem 0n0s 27937
Description: Peano postulate: 0s is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
0n0s 0s ∈ ℕ0s

Proof of Theorem 0n0s
StepHypRef Expression
1 0sno 27562 . . . 4 0s No
2 fr0g 8440 . . . 4 ( 0s No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) = 0s )
31, 2ax-mp 5 . . 3 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) = 0s
4 frfnom 8439 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) Fn ω
5 peano1 7883 . . . 4 ∅ ∈ ω
6 fnfvelrn 7083 . . . 4 (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω))
74, 5, 6mp2an 688 . . 3 ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)
83, 7eqeltrri 2828 . 2 0s ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)
9 df-n0s 27929 . . 3 0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω)
10 df-ima 5690 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)
119, 10eqtri 2758 . 2 0s = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)
128, 11eleqtrri 2830 1 0s ∈ ℕ0s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  Vcvv 3472  c0 4323  cmpt 5232  ran crn 5678  cres 5679  cima 5680   Fn wfn 6539  cfv 6544  (class class class)co 7413  ωcom 7859  reccrdg 8413   No csur 27377   0s c0s 27558   1s c1s 27559   +s cadds 27679  0scnn0s 27927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-no 27380  df-slt 27381  df-bday 27382  df-sslt 27517  df-scut 27519  df-0s 27560  df-n0s 27929
This theorem is referenced by:  dfn0s2  27939  n0sind  27940
  Copyright terms: Public domain W3C validator