![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0n0s | Structured version Visualization version GIF version |
Description: Peano postulate: 0s is a non-negative surreal integer. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
0n0s | ⊢ 0s ∈ ℕ0s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno 27562 | . . . 4 ⊢ 0s ∈ No | |
2 | fr0g 8440 | . . . 4 ⊢ ( 0s ∈ No → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) = 0s ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) = 0s |
4 | frfnom 8439 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) Fn ω | |
5 | peano1 7883 | . . . 4 ⊢ ∅ ∈ ω | |
6 | fnfvelrn 7083 | . . . 4 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)) | |
7 | 4, 5, 6 | mp2an 688 | . . 3 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω)‘∅) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) |
8 | 3, 7 | eqeltrri 2828 | . 2 ⊢ 0s ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) |
9 | df-n0s 27929 | . . 3 ⊢ ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω) | |
10 | df-ima 5690 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) | |
11 | 9, 10 | eqtri 2758 | . 2 ⊢ ℕ0s = ran (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) ↾ ω) |
12 | 8, 11 | eleqtrri 2830 | 1 ⊢ 0s ∈ ℕ0s |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 ↦ cmpt 5232 ran crn 5678 ↾ cres 5679 “ cima 5680 Fn wfn 6539 ‘cfv 6544 (class class class)co 7413 ωcom 7859 reccrdg 8413 No csur 27377 0s c0s 27558 1s c1s 27559 +s cadds 27679 ℕ0scnn0s 27927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-no 27380 df-slt 27381 df-bday 27382 df-sslt 27517 df-scut 27519 df-0s 27560 df-n0s 27929 |
This theorem is referenced by: dfn0s2 27939 n0sind 27940 |
Copyright terms: Public domain | W3C validator |