![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nssd | Structured version Visualization version GIF version |
Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nssd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
nssd.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
nssd | ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nssd.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | nssd.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵)) |
4 | eleq1 2813 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
5 | eleq1 2813 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑋 ∈ 𝐵)) |
7 | 4, 6 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵))) |
8 | 7 | spcegv 3579 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
9 | 1, 3, 8 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
10 | nss 4039 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
11 | 9, 10 | sylibr 233 | 1 ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⊆ wss 3941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-ss 3958 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |