| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nssd | Structured version Visualization version GIF version | ||
| Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| nssd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| nssd.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| nssd | ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nssd.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | nssd.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵)) |
| 4 | eleq1 2829 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 5 | eleq1 2829 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 6 | 5 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑋 ∈ 𝐵)) |
| 7 | 4, 6 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵))) |
| 8 | 7 | spcegv 3597 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ((𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 9 | 1, 3, 8 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 10 | nss 4048 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | 1 ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ss 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |