Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
iineq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iineq12dv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iineq12dv | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | iineq1d 43012 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
3 | iineq12dv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) | |
4 | 3 | iineq2dv 4967 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐵 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
5 | 2, 4 | eqtrd 2776 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ ciin 4943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-iin 4945 |
This theorem is referenced by: smflim 44704 |
Copyright terms: Public domain | W3C validator |