Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
iineq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iineq12dv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iineq12dv | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | iineq1d 42593 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
3 | iineq12dv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) | |
4 | 3 | iineq2dv 4954 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐵 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
5 | 2, 4 | eqtrd 2779 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ ciin 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-iin 4932 |
This theorem is referenced by: smflim 44263 |
Copyright terms: Public domain | W3C validator |