| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| iineq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| iineq12dv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iineq12dv | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq12dv.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | 2 | imbi1d 341 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝑡 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 → 𝑡 ∈ 𝐶))) |
| 4 | 3 | ralbidv2 3153 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑡 ∈ 𝐶)) |
| 5 | 4 | abbidv 2796 | . . 3 ⊢ (𝜑 → {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∀𝑥 ∈ 𝐵 𝑡 ∈ 𝐶}) |
| 6 | df-iin 4961 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
| 7 | df-iin 4961 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑡 ∣ ∀𝑥 ∈ 𝐵 𝑡 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2790 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
| 9 | iineq12dv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) | |
| 10 | 9 | iineq2dv 4984 | . 2 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐵 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
| 11 | 8, 10 | eqtrd 2765 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-iin 4961 |
| This theorem is referenced by: smflim 46782 |
| Copyright terms: Public domain | W3C validator |