MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Structured version   Visualization version   GIF version

Theorem nss 3999
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nss
StepHypRef Expression
1 exanali 1860 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
2 df-ss 3919 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2xchbinxr 335 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ 𝐴𝐵)
43bicomi 224 1 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2111  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ss 3919
This theorem is referenced by:  grur1  10708  psslinpr  10919  reclem2pr  10936  mreexexlem2d  17548  prmcyg  19804  filconn  23796  alexsubALTlem4  23963  wilthlem2  27004  shne0i  31423  onvf1odlem2  35136  erdszelem10  35232  fundmpss  35799  ntrneineine1lem  44116  nssrex  45122  nssd  45141  nsssmfmbf  46816
  Copyright terms: Public domain W3C validator