MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Structured version   Visualization version   GIF version

Theorem nss 4042
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nss
StepHypRef Expression
1 exanali 1854 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
2 df-ss 3962 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2xchbinxr 334 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ 𝐴𝐵)
43bicomi 223 1 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531  wex 1773  wcel 2098  wss 3945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-ss 3962
This theorem is referenced by:  grur1  10843  psslinpr  11054  reclem2pr  11071  mreexexlem2d  17624  prmcyg  19853  filconn  23817  alexsubALTlem4  23984  wilthlem2  27031  shne0i  31314  erdszelem10  34880  fundmpss  35432  ntrneineine1lem  43579  nssrex  44517  nssd  44536  nsssmfmbf  46230
  Copyright terms: Public domain W3C validator