![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nss | Structured version Visualization version GIF version |
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
nss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanali 1858 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | df-ss 3993 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ 𝐴 ⊆ 𝐵) |
4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ss 3993 |
This theorem is referenced by: grur1 10889 psslinpr 11100 reclem2pr 11117 mreexexlem2d 17703 prmcyg 19936 filconn 23912 alexsubALTlem4 24079 wilthlem2 27130 shne0i 31480 erdszelem10 35168 fundmpss 35730 ntrneineine1lem 44046 nssrex 44988 nssd 45007 nsssmfmbf 46700 |
Copyright terms: Public domain | W3C validator |