MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Structured version   Visualization version   GIF version

Theorem nss 4015
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nss
StepHypRef Expression
1 exanali 1860 . . 3 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ ∀𝑥(𝑥𝐴𝑥𝐵))
2 dfss2 3939 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2xchbinxr 338 . 2 (∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ 𝐴𝐵)
43bicomi 227 1 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  wex 1781  wcel 2115  wss 3919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936
This theorem is referenced by:  grur1  10242  psslinpr  10453  reclem2pr  10470  mreexexlem2d  16918  prmcyg  19016  filconn  22497  alexsubALTlem4  22664  wilthlem2  25663  shne0i  29240  erdszelem10  32532  fundmpss  33094  ntrneineine1lem  40734  nssrex  41671  nssd  41691  nsssmfmbf  43365
  Copyright terms: Public domain W3C validator