| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nss | Structured version Visualization version GIF version | ||
| Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| nss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanali 1860 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ss 3915 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ 𝐴 ⊆ 𝐵) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2113 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ss 3915 |
| This theorem is referenced by: grur1 10718 psslinpr 10929 reclem2pr 10946 mreexexlem2d 17553 prmcyg 19808 filconn 23799 alexsubALTlem4 23966 wilthlem2 27007 shne0i 31430 onvf1odlem2 35169 erdszelem10 35265 fundmpss 35832 ntrneineine1lem 44201 nssrex 45207 nssd 45226 nsssmfmbf 46901 |
| Copyright terms: Public domain | W3C validator |