| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nss | Structured version Visualization version GIF version | ||
| Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| nss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanali 1859 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ss 3934 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ 𝐴 ⊆ 𝐵) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ss 3934 |
| This theorem is referenced by: grur1 10780 psslinpr 10991 reclem2pr 11008 mreexexlem2d 17613 prmcyg 19831 filconn 23777 alexsubALTlem4 23944 wilthlem2 26986 shne0i 31384 onvf1odlem2 35098 erdszelem10 35194 fundmpss 35761 ntrneineine1lem 44080 nssrex 45087 nssd 45106 nsssmfmbf 46784 |
| Copyright terms: Public domain | W3C validator |