| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1917 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: spcedv 3564 spcev 3572 eqeu 3677 absneu 4692 issn 4796 elpreqprlem 4830 elunii 4876 axpweq 5306 brcogw 5832 opeldmd 5870 breldmg 5873 dmsnopg 6186 predtrss 6295 fvrnressn 7133 f1oexbi 7904 unielxp 8006 frrlem13 8277 f1oen4g 8936 f1dom4g 8937 f1oen3g 8938 f1dom3g 8939 f1domg 8943 en2sn 9012 en2prd 9019 fodomr 9092 fodomfir 9279 ordiso 9469 fowdom 9524 inf0 9574 infeq5i 9589 oncard 9913 cardsn 9922 dfac8b 9984 ac10ct 9987 aceq3lem 10073 dfacacn 10095 cflem 10198 cflemOLD 10199 cflecard 10206 cfslb 10219 coftr 10226 alephsing 10229 fin4i 10251 axdc4lem 10408 gchi 10577 hasheqf1oi 14316 relexpindlem 15029 climeu 15521 brcici 17762 initoeu2lem2 17977 gsumval2a 18612 irinitoringc 21389 uptx 23512 alexsubALTlem1 23934 ptcmplem3 23941 prdsxmslem2 24417 tgjustf 28400 tgjustr 28401 wlksnwwlknvbij 29838 clwwlkvbij 30042 aciunf1lem 32586 locfinref 33831 fnimage 35917 fnessref 36345 refssfne 36346 filnetlem4 36369 bj-restb 37082 fin2so 37601 unirep 37708 indexa 37727 nssd 45099 choicefi 45194 axccdom 45216 stoweidlem5 46003 stoweidlem27 46025 stoweidlem28 46026 stoweidlem31 46029 stoweidlem43 46041 stoweidlem44 46042 stoweidlem51 46049 stoweidlem59 46057 nsssmfmbflem 46776 fundcmpsurinjpreimafv 47409 sprbisymrel 47500 uspgrbisymrelALT 48143 |
| Copyright terms: Public domain | W3C validator |