Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2139, ax-11 2156. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprcd 249 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | eximdv 1921 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: spcedv 3527 spcev 3535 eqeu 3636 absneu 4661 issn 4760 elpreqprlem 4793 elunii 4841 axpweq 5282 brcogw 5766 opeldmd 5804 breldmg 5807 dmsnopg 6105 predtrss 6214 fvrnressn 7015 f1oexbi 7749 unielxp 7842 frrlem13 8085 f1oen3g 8709 f1dom3g 8710 f1domg 8715 en2sn 8785 en2snOLD 8786 fodomr 8864 ordiso 9205 fowdom 9260 inf0 9309 infeq5i 9324 oncard 9649 cardsn 9658 dfac8b 9718 ac10ct 9721 aceq3lem 9807 dfacacn 9828 cflem 9933 cflecard 9940 cfslb 9953 coftr 9960 alephsing 9963 fin4i 9985 axdc4lem 10142 gchi 10311 hasheqf1oi 13994 relexpindlem 14702 climeu 15192 brcici 17429 initoeu2lem2 17646 gsumval2a 18284 uptx 22684 alexsubALTlem1 23106 ptcmplem3 23113 prdsxmslem2 23591 tgjustf 26738 tgjustr 26739 wlksnwwlknvbij 28174 clwwlkvbij 28378 aciunf1lem 30901 locfinref 31693 fnimage 34158 fnessref 34473 refssfne 34474 filnetlem4 34497 bj-restb 35192 fin2so 35691 unirep 35798 indexa 35818 rp-isfinite5 41022 nssd 42544 choicefi 42629 axccdom 42651 stoweidlem5 43436 stoweidlem27 43458 stoweidlem28 43459 stoweidlem31 43462 stoweidlem43 43474 stoweidlem44 43475 stoweidlem51 43482 stoweidlem59 43490 nsssmfmbflem 44200 fundcmpsurinjpreimafv 44748 sprbisymrel 44839 isomuspgrlem2 45173 uspgrbisymrelALT 45205 irinitoringc 45515 |
Copyright terms: Public domain | W3C validator |