![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2135, ax-11 2152. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2813 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprcd 249 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | eximdv 1918 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2808 |
This theorem is referenced by: spcedv 3589 spcev 3597 eqeu 3703 absneu 4733 issn 4834 elpreqprlem 4867 elunii 4914 axpweq 5349 brcogw 5869 opeldmd 5907 breldmg 5910 dmsnopg 6213 predtrss 6324 fvrnressn 7162 f1oexbi 7923 unielxp 8017 frrlem13 8287 f1oen4g 8964 f1dom4g 8965 f1oen3g 8966 f1dom3g 8967 f1domg 8972 en2sn 9045 en2snOLD 9046 en2prd 9052 fodomr 9132 ordiso 9515 fowdom 9570 inf0 9620 infeq5i 9635 oncard 9959 cardsn 9968 dfac8b 10030 ac10ct 10033 aceq3lem 10119 dfacacn 10140 cflem 10245 cflecard 10252 cfslb 10265 coftr 10272 alephsing 10275 fin4i 10297 axdc4lem 10454 gchi 10623 hasheqf1oi 14317 relexpindlem 15016 climeu 15505 brcici 17753 initoeu2lem2 17971 gsumval2a 18612 uptx 23351 alexsubALTlem1 23773 ptcmplem3 23780 prdsxmslem2 24260 tgjustf 27989 tgjustr 27990 wlksnwwlknvbij 29427 clwwlkvbij 29631 aciunf1lem 32152 locfinref 33117 fnimage 35203 fnessref 35547 refssfne 35548 filnetlem4 35571 bj-restb 36280 fin2so 36780 unirep 36887 indexa 36906 nssd 44097 choicefi 44199 axccdom 44221 stoweidlem5 45021 stoweidlem27 45043 stoweidlem28 45044 stoweidlem31 45047 stoweidlem43 45059 stoweidlem44 45060 stoweidlem51 45067 stoweidlem59 45075 nsssmfmbflem 45794 fundcmpsurinjpreimafv 46376 sprbisymrel 46467 isomuspgrlem2 46801 uspgrbisymrelALT 46833 irinitoringc 47057 |
Copyright terms: Public domain | W3C validator |