| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2817 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1917 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: spcedv 3582 spcev 3590 eqeu 3694 absneu 4709 issn 4813 elpreqprlem 4847 elunii 4893 axpweq 5326 brcogw 5853 opeldmd 5891 breldmg 5894 dmsnopg 6207 predtrss 6316 fvrnressn 7156 f1oexbi 7929 unielxp 8031 frrlem13 8302 f1oen4g 8984 f1dom4g 8985 f1oen3g 8986 f1dom3g 8987 f1domg 8991 en2sn 9060 en2prd 9067 fodomr 9147 fodomfir 9345 ordiso 9535 fowdom 9590 inf0 9640 infeq5i 9655 oncard 9979 cardsn 9988 dfac8b 10050 ac10ct 10053 aceq3lem 10139 dfacacn 10161 cflem 10264 cflemOLD 10265 cflecard 10272 cfslb 10285 coftr 10292 alephsing 10295 fin4i 10317 axdc4lem 10474 gchi 10643 hasheqf1oi 14374 relexpindlem 15087 climeu 15576 brcici 17818 initoeu2lem2 18033 gsumval2a 18668 irinitoringc 21445 uptx 23568 alexsubALTlem1 23990 ptcmplem3 23997 prdsxmslem2 24473 tgjustf 28457 tgjustr 28458 wlksnwwlknvbij 29895 clwwlkvbij 30099 aciunf1lem 32645 locfinref 33877 fnimage 35952 fnessref 36380 refssfne 36381 filnetlem4 36404 bj-restb 37117 fin2so 37636 unirep 37743 indexa 37762 nssd 45096 choicefi 45191 axccdom 45213 stoweidlem5 46001 stoweidlem27 46023 stoweidlem28 46024 stoweidlem31 46027 stoweidlem43 46039 stoweidlem44 46040 stoweidlem51 46047 stoweidlem59 46055 nsssmfmbflem 46774 fundcmpsurinjpreimafv 47389 sprbisymrel 47480 uspgrbisymrelALT 48097 |
| Copyright terms: Public domain | W3C validator |