| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1917 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: spcedv 3553 spcev 3561 eqeu 3666 absneu 4680 issn 4783 elpreqprlem 4817 elunii 4863 axpweq 5290 brcogw 5811 opeldmd 5849 breldmg 5852 dmsnopg 6162 predtrss 6270 fvrnressn 7095 f1oexbi 7861 unielxp 7962 frrlem13 8231 f1oen4g 8890 f1dom4g 8891 f1oen3g 8892 f1dom3g 8893 f1domg 8897 en2sn 8966 en2prd 8973 fodomr 9045 fodomfir 9218 ordiso 9408 fowdom 9463 inf0 9517 infeq5i 9532 oncard 9856 cardsn 9865 dfac8b 9925 ac10ct 9928 aceq3lem 10014 dfacacn 10036 cflem 10139 cflemOLD 10140 cflecard 10147 cfslb 10160 coftr 10167 alephsing 10170 fin4i 10192 axdc4lem 10349 gchi 10518 hasheqf1oi 14258 relexpindlem 14970 climeu 15462 brcici 17707 initoeu2lem2 17922 gsumval2a 18559 irinitoringc 21386 uptx 23510 alexsubALTlem1 23932 ptcmplem3 23939 prdsxmslem2 24415 tgjustf 28418 tgjustr 28419 wlksnwwlknvbij 29853 clwwlkvbij 30057 aciunf1lem 32606 locfinref 33814 tz9.1regs 35073 fnimage 35913 fnessref 36341 refssfne 36342 filnetlem4 36365 bj-restb 37078 fin2so 37597 unirep 37704 indexa 37723 nssd 45093 choicefi 45188 axccdom 45210 stoweidlem5 45996 stoweidlem27 46018 stoweidlem28 46019 stoweidlem31 46022 stoweidlem43 46034 stoweidlem44 46035 stoweidlem51 46042 stoweidlem59 46050 nsssmfmbflem 46769 fundcmpsurinjpreimafv 47402 sprbisymrel 47493 uspgrbisymrelALT 48149 |
| Copyright terms: Public domain | W3C validator |