| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1917 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: spcedv 3567 spcev 3575 eqeu 3680 absneu 4695 issn 4799 elpreqprlem 4833 elunii 4879 axpweq 5309 brcogw 5835 opeldmd 5873 breldmg 5876 dmsnopg 6189 predtrss 6298 fvrnressn 7136 f1oexbi 7907 unielxp 8009 frrlem13 8280 f1oen4g 8939 f1dom4g 8940 f1oen3g 8941 f1dom3g 8942 f1domg 8946 en2sn 9015 en2prd 9022 fodomr 9098 fodomfir 9286 ordiso 9476 fowdom 9531 inf0 9581 infeq5i 9596 oncard 9920 cardsn 9929 dfac8b 9991 ac10ct 9994 aceq3lem 10080 dfacacn 10102 cflem 10205 cflemOLD 10206 cflecard 10213 cfslb 10226 coftr 10233 alephsing 10236 fin4i 10258 axdc4lem 10415 gchi 10584 hasheqf1oi 14323 relexpindlem 15036 climeu 15528 brcici 17769 initoeu2lem2 17984 gsumval2a 18619 irinitoringc 21396 uptx 23519 alexsubALTlem1 23941 ptcmplem3 23948 prdsxmslem2 24424 tgjustf 28407 tgjustr 28408 wlksnwwlknvbij 29845 clwwlkvbij 30049 aciunf1lem 32593 locfinref 33838 fnimage 35924 fnessref 36352 refssfne 36353 filnetlem4 36376 bj-restb 37089 fin2so 37608 unirep 37715 indexa 37734 nssd 45106 choicefi 45201 axccdom 45223 stoweidlem5 46010 stoweidlem27 46032 stoweidlem28 46033 stoweidlem31 46036 stoweidlem43 46048 stoweidlem44 46049 stoweidlem51 46056 stoweidlem59 46064 nsssmfmbflem 46783 fundcmpsurinjpreimafv 47413 sprbisymrel 47504 uspgrbisymrelALT 48147 |
| Copyright terms: Public domain | W3C validator |