Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2141, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2822 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprcd 249 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | eximdv 1924 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∃wex 1786 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-clel 2818 |
This theorem is referenced by: spcedv 3536 spcev 3544 eqeu 3645 absneu 4670 issn 4769 elpreqprlem 4802 elunii 4850 axpweq 5291 brcogw 5776 opeldmd 5814 breldmg 5817 dmsnopg 6115 predtrss 6224 fvrnressn 7030 f1oexbi 7769 unielxp 7862 frrlem13 8105 f1oen3g 8737 f1dom3g 8738 f1domg 8743 en2sn 8814 en2snOLD 8815 fodomr 8897 ordiso 9253 fowdom 9308 inf0 9357 infeq5i 9372 oncard 9719 cardsn 9728 dfac8b 9788 ac10ct 9791 aceq3lem 9877 dfacacn 9898 cflem 10003 cflecard 10010 cfslb 10023 coftr 10030 alephsing 10033 fin4i 10055 axdc4lem 10212 gchi 10381 hasheqf1oi 14064 relexpindlem 14772 climeu 15262 brcici 17510 initoeu2lem2 17728 gsumval2a 18367 uptx 22774 alexsubALTlem1 23196 ptcmplem3 23203 prdsxmslem2 23683 tgjustf 26832 tgjustr 26833 wlksnwwlknvbij 28269 clwwlkvbij 28473 aciunf1lem 30995 locfinref 31787 fnimage 34227 fnessref 34542 refssfne 34543 filnetlem4 34566 bj-restb 35261 fin2so 35760 unirep 35867 indexa 35887 rp-isfinite5 41103 nssd 42625 choicefi 42710 axccdom 42732 stoweidlem5 43517 stoweidlem27 43539 stoweidlem28 43540 stoweidlem31 43543 stoweidlem43 43555 stoweidlem44 43556 stoweidlem51 43563 stoweidlem59 43571 nsssmfmbflem 44281 fundcmpsurinjpreimafv 44829 sprbisymrel 44920 isomuspgrlem2 45254 uspgrbisymrelALT 45286 irinitoringc 45596 |
Copyright terms: Public domain | W3C validator |