| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2144, ax-11 2160. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2813 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1918 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: spcedv 3548 spcev 3556 eqeu 3660 absneu 4678 issn 4781 elpreqprlem 4815 elunii 4861 axpweq 5287 brcogw 5807 opeldmd 5845 breldmg 5848 dmsnopg 6160 predtrss 6269 fvrnressn 7094 f1oexbi 7858 unielxp 7959 frrlem13 8228 f1oen4g 8887 f1dom4g 8888 f1oen3g 8889 f1dom3g 8890 f1domg 8894 en2sn 8963 en2prd 8969 fodomr 9041 fodomfir 9212 ordiso 9402 fowdom 9457 inf0 9511 infeq5i 9526 oncard 9853 cardsn 9862 dfac8b 9922 ac10ct 9925 aceq3lem 10011 dfacacn 10033 cflem 10136 cflemOLD 10137 cflecard 10144 cfslb 10157 coftr 10164 alephsing 10167 fin4i 10189 axdc4lem 10346 gchi 10515 hasheqf1oi 14258 relexpindlem 14970 climeu 15462 brcici 17707 initoeu2lem2 17922 gsumval2a 18593 irinitoringc 21416 uptx 23540 alexsubALTlem1 23962 ptcmplem3 23969 prdsxmslem2 24444 tgjustf 28451 tgjustr 28452 wlksnwwlknvbij 29886 clwwlkvbij 30093 aciunf1lem 32644 locfinref 33854 tz9.1regs 35130 fnimage 35971 fnessref 36401 refssfne 36402 filnetlem4 36425 bj-restb 37138 fin2so 37646 unirep 37753 indexa 37772 nssd 45201 choicefi 45296 axccdom 45318 stoweidlem5 46102 stoweidlem27 46124 stoweidlem28 46125 stoweidlem31 46128 stoweidlem43 46140 stoweidlem44 46141 stoweidlem51 46148 stoweidlem59 46156 nsssmfmbflem 46875 fundcmpsurinjpreimafv 47507 sprbisymrel 47598 uspgrbisymrelALT 48254 |
| Copyright terms: Public domain | W3C validator |