Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2138, ax-11 2155. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2821 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprcd 249 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | eximdv 1921 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-clel 2817 |
This theorem is referenced by: spcedv 3538 spcev 3546 eqeu 3642 absneu 4665 issn 4764 elpreqprlem 4797 elunii 4845 axpweq 5288 brcogw 5780 opeldmd 5818 breldmg 5821 dmsnopg 6121 predtrss 6229 fvrnressn 7042 f1oexbi 7784 unielxp 7878 frrlem13 8123 f1oen3g 8763 f1dom3g 8764 f1domg 8769 en2sn 8840 en2snOLD 8841 fodomr 8924 ordiso 9284 fowdom 9339 inf0 9388 infeq5i 9403 oncard 9727 cardsn 9736 dfac8b 9796 ac10ct 9799 aceq3lem 9885 dfacacn 9906 cflem 10011 cflecard 10018 cfslb 10031 coftr 10038 alephsing 10041 fin4i 10063 axdc4lem 10220 gchi 10389 hasheqf1oi 14075 relexpindlem 14783 climeu 15273 brcici 17521 initoeu2lem2 17739 gsumval2a 18378 uptx 22785 alexsubALTlem1 23207 ptcmplem3 23214 prdsxmslem2 23694 tgjustf 26843 tgjustr 26844 wlksnwwlknvbij 28282 clwwlkvbij 28486 aciunf1lem 31008 locfinref 31800 fnimage 34240 fnessref 34555 refssfne 34556 filnetlem4 34579 bj-restb 35274 fin2so 35773 unirep 35880 indexa 35900 rp-isfinite5 41131 nssd 42662 choicefi 42747 axccdom 42769 stoweidlem5 43553 stoweidlem27 43575 stoweidlem28 43576 stoweidlem31 43579 stoweidlem43 43591 stoweidlem44 43592 stoweidlem51 43599 stoweidlem59 43607 nsssmfmbflem 44323 fundcmpsurinjpreimafv 44871 sprbisymrel 44962 isomuspgrlem2 45296 uspgrbisymrelALT 45328 irinitoringc 45638 |
Copyright terms: Public domain | W3C validator |