![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2141, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2826 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
4 | 3 | eximdv 1916 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: spcedv 3611 spcev 3619 eqeu 3728 absneu 4753 issn 4857 elpreqprlem 4890 elunii 4936 axpweq 5369 brcogw 5893 opeldmd 5931 breldmg 5934 dmsnopg 6244 predtrss 6354 fvrnressn 7195 f1oexbi 7968 unielxp 8068 frrlem13 8339 f1oen4g 9024 f1dom4g 9025 f1oen3g 9026 f1dom3g 9027 f1domg 9032 en2sn 9106 en2snOLD 9107 en2prd 9114 fodomr 9194 fodomfir 9396 ordiso 9585 fowdom 9640 inf0 9690 infeq5i 9705 oncard 10029 cardsn 10038 dfac8b 10100 ac10ct 10103 aceq3lem 10189 dfacacn 10211 cflem 10314 cflemOLD 10315 cflecard 10322 cfslb 10335 coftr 10342 alephsing 10345 fin4i 10367 axdc4lem 10524 gchi 10693 hasheqf1oi 14400 relexpindlem 15112 climeu 15601 brcici 17861 initoeu2lem2 18082 gsumval2a 18723 irinitoringc 21513 uptx 23654 alexsubALTlem1 24076 ptcmplem3 24083 prdsxmslem2 24563 tgjustf 28499 tgjustr 28500 wlksnwwlknvbij 29941 clwwlkvbij 30145 aciunf1lem 32680 locfinref 33787 fnimage 35893 fnessref 36323 refssfne 36324 filnetlem4 36347 bj-restb 37060 fin2so 37567 unirep 37674 indexa 37693 nssd 45007 choicefi 45107 axccdom 45129 stoweidlem5 45926 stoweidlem27 45948 stoweidlem28 45949 stoweidlem31 45952 stoweidlem43 45964 stoweidlem44 45965 stoweidlem51 45972 stoweidlem59 45980 nsssmfmbflem 46699 fundcmpsurinjpreimafv 47282 sprbisymrel 47373 uspgrbisymrelALT 47878 |
Copyright terms: Public domain | W3C validator |