| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcegv | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcegv | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 4 | 3 | eximdv 1917 | . 2 ⊢ (𝜓 → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) |
| 5 | 1, 4 | syl5com 31 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2803 |
| This theorem is referenced by: spcedv 3561 spcev 3569 eqeu 3674 absneu 4688 issn 4792 elpreqprlem 4826 elunii 4872 axpweq 5301 brcogw 5822 opeldmd 5860 breldmg 5863 dmsnopg 6174 predtrss 6283 fvrnressn 7115 f1oexbi 7884 unielxp 7985 frrlem13 8254 f1oen4g 8913 f1dom4g 8914 f1oen3g 8915 f1dom3g 8916 f1domg 8920 en2sn 8989 en2prd 8996 fodomr 9069 fodomfir 9255 ordiso 9445 fowdom 9500 inf0 9550 infeq5i 9565 oncard 9889 cardsn 9898 dfac8b 9960 ac10ct 9963 aceq3lem 10049 dfacacn 10071 cflem 10174 cflemOLD 10175 cflecard 10182 cfslb 10195 coftr 10202 alephsing 10205 fin4i 10227 axdc4lem 10384 gchi 10553 hasheqf1oi 14292 relexpindlem 15005 climeu 15497 brcici 17742 initoeu2lem2 17957 gsumval2a 18594 irinitoringc 21421 uptx 23545 alexsubALTlem1 23967 ptcmplem3 23974 prdsxmslem2 24450 tgjustf 28453 tgjustr 28454 wlksnwwlknvbij 29888 clwwlkvbij 30092 aciunf1lem 32636 locfinref 33824 fnimage 35910 fnessref 36338 refssfne 36339 filnetlem4 36362 bj-restb 37075 fin2so 37594 unirep 37701 indexa 37720 nssd 45092 choicefi 45187 axccdom 45209 stoweidlem5 45996 stoweidlem27 46018 stoweidlem28 46019 stoweidlem31 46022 stoweidlem43 46034 stoweidlem44 46035 stoweidlem51 46042 stoweidlem59 46050 nsssmfmbflem 46769 fundcmpsurinjpreimafv 47402 sprbisymrel 47493 uspgrbisymrelALT 48136 |
| Copyright terms: Public domain | W3C validator |