| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1924 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5158 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5158 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2707 〈cop 4585 {copab 5157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-opab 5158 |
| This theorem is referenced by: opabbii 5162 mpteq12dva 5181 csbopab 5502 csbopabgALT 5503 csbmpt12 5504 xpeq1 5637 xpeq2 5644 opabbi2dv 5796 csbcnvgALT 5831 resopab2 5991 mptcnv 6092 cores 6202 xpco 6241 dffn5 6885 f1oiso2 7293 fvmptopab 7408 f1ocnvd 7604 ofreq 7621 mptmpoopabbrd 8022 mptmpoopabbrdOLD 8023 bropopvvv 8030 bropfvvvv 8032 fnwelem 8071 sprmpod 8164 mpocurryd 8209 wemapwe 9612 ttrcleq 9624 xpcogend 14899 shftfval 14995 2shfti 15005 prdsval 17377 pwsle 17414 sectffval 17675 sectfval 17676 isfunc 17789 isfull 17837 isfth 17841 ipoval 18454 eqgfval 19073 eqg0subg 19093 dvdsrval 20264 dvdsrpropd 20319 ltbval 21966 opsrval 21969 lmfval 23135 xkocnv 23717 tgphaus 24020 isphtpc 24909 bcthlem1 25240 bcth 25245 dvcnp2 25837 dvmulbr 25857 dvcobr 25865 cmvth 25911 dvfsumle 25942 dvfsumlem2 25949 taylthlem2 26298 ulmval 26305 lgsquadlem3 27309 iscgrg 28475 legval 28547 ishlg 28565 perpln1 28673 perpln2 28674 isperp 28675 ishpg 28722 iscgra 28772 isinag 28801 isleag 28810 wksfval 29573 upgrtrls 29663 upgrspthswlk 29701 ajfval 30771 f1o3d 32584 f1od2 32677 mgcoval 32941 inftmrel 33132 isinftm 33133 erlval 33208 rlocval 33209 quslsm 33352 idlsrgval 33450 metidval 33856 faeval 34212 eulerpartlemgvv 34343 eulerpart 34349 afsval 34638 satf 35325 satfvsuc 35333 satfv1 35335 satf0suc 35348 sat1el2xp 35351 fmlasuc0 35356 bj-imdirvallem 37153 bj-imdirval2 37156 bj-imdirco 37163 bj-iminvval2 37167 cureq 37575 curf 37577 curunc 37581 fnopabeqd 37700 cosseq 38402 lcvfbr 38998 cmtfvalN 39188 cvrfval 39246 dicffval 41153 dicfval 41154 dicval 41155 prjspval 42576 prjspnerlem 42590 0prjspn 42601 dnwech 43021 aomclem8 43034 tfsconcatun 43310 tfsconcat0i 43318 tfsconcatrev 43321 rfovcnvfvd 43980 fsovrfovd 43982 dfafn5a 47145 sprsymrelfv 47479 sprsymrelfo 47482 upwlksfval 48120 sectpropdlem 49022 upfval 49162 upfval2 49163 upfval3 49164 uppropd 49167 |
| Copyright terms: Public domain | W3C validator |