![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1892 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1892 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | opabbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 1, 2, 3 | opabbid 5027 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 {copab 5024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-9 2091 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-opab 5025 |
This theorem is referenced by: opabbii 5029 csbopab 5330 csbopabgALT 5331 csbmpt12 5332 xpeq1 5457 xpeq2 5464 opabbi2dv 5606 csbcnvgALT 5641 resopab2 5785 mptcnv 5874 cores 5977 xpco 6015 dffn5 6592 f1oiso2 6968 fvmptopab 7068 f1ocnvd 7254 ofreq 7270 mptmpoopabbrd 7634 bropopvvv 7641 bropfvvvv 7643 fnwelem 7678 sprmpod 7741 mpocurryd 7786 wemapwe 9006 xpcogend 14168 shftfval 14263 2shfti 14273 prdsval 16557 pwsle 16594 sectffval 16849 sectfval 16850 isfunc 16963 isfull 17009 isfth 17013 ipoval 17593 eqgfval 18081 dvdsrval 19085 dvdsrpropd 19136 ltbval 19939 opsrval 19942 lmfval 21524 xkocnv 22106 tgphaus 22408 isphtpc 23281 bcthlem1 23610 bcth 23615 ulmval 24651 lgsquadlem3 25640 iscgrg 25980 legval 26052 ishlg 26070 perpln1 26178 perpln2 26179 isperp 26180 ishpg 26227 iscgra 26277 isinag 26307 isleag 26316 wksfval 27074 upgrtrls 27170 upgrspthswlk 27206 ajfval 28277 f1o3d 30062 f1od2 30145 inftmrel 30447 isinftm 30448 metidval 30747 faeval 31122 eulerpartlemgvv 31251 eulerpart 31257 afsval 31559 satf 32209 satfvsuc 32217 satfv1 32219 satf0suc 32232 sat1el2xp 32235 fmlasuc0 32240 cureq 34418 curf 34420 curunc 34424 fnopabeqd 34546 cosseq 35221 lcvfbr 35706 cmtfvalN 35896 cvrfval 35954 dicffval 37860 dicfval 37861 dicval 37862 prjspval 38769 prjspnval2 38783 0prjspn 38786 dnwech 39152 aomclem8 39165 rfovcnvfvd 39857 fsovrfovd 39859 dfafn5a 42895 sprsymrelfv 43158 sprsymrelfo 43161 upwlksfval 43512 |
Copyright terms: Public domain | W3C validator |