![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 627 | . . . 4 ⊢ (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒))) |
3 | 2 | 2exbidv 1925 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒))) |
4 | 3 | abbidv 2799 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)}) |
5 | df-opab 5210 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
6 | df-opab 5210 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 {cab 2707 ⟨cop 4633 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-opab 5210 |
This theorem is referenced by: opabbii 5214 mpteq12dva 5236 csbopab 5554 csbopabgALT 5555 csbmpt12 5556 xpeq1 5689 xpeq2 5696 opabbi2dv 5848 csbcnvgALT 5883 resopab2 6035 mptcnv 6138 cores 6247 xpco 6287 dffn5 6949 f1oiso2 7351 fvmptopab 7465 fvmptopabOLD 7466 f1ocnvd 7659 ofreq 7676 mptmpoopabbrd 8069 mptmpoopabbrdOLD 8071 bropopvvv 8078 bropfvvvv 8080 fnwelem 8119 sprmpod 8211 mpocurryd 8256 wemapwe 9694 ttrcleq 9706 xpcogend 14925 shftfval 15021 2shfti 15031 prdsval 17405 pwsle 17442 sectffval 17701 sectfval 17702 isfunc 17818 isfull 17865 isfth 17869 ipoval 18487 eqgfval 19092 eqg0subg 19111 dvdsrval 20252 dvdsrpropd 20307 ltbval 21817 opsrval 21820 lmfval 22956 xkocnv 23538 tgphaus 23841 isphtpc 24740 bcthlem1 25072 bcth 25077 dvcnp2 25669 dvmulbr 25689 dvcobr 25697 ulmval 26128 lgsquadlem3 27121 iscgrg 28030 legval 28102 ishlg 28120 perpln1 28228 perpln2 28229 isperp 28230 ishpg 28277 iscgra 28327 isinag 28356 isleag 28365 wksfval 29133 upgrtrls 29225 upgrspthswlk 29262 ajfval 30329 f1o3d 32118 f1od2 32213 mgcoval 32423 inftmrel 32596 isinftm 32597 quslsm 32790 idlsrgval 32891 metidval 33168 faeval 33542 eulerpartlemgvv 33673 eulerpart 33679 afsval 33981 satf 34642 satfvsuc 34650 satfv1 34652 satf0suc 34665 sat1el2xp 34668 fmlasuc0 34673 gg-cmvth 35466 gg-dvfsumle 35468 gg-dvfsumlem2 35469 bj-imdirvallem 36364 bj-imdirval2 36367 bj-imdirco 36374 bj-iminvval2 36378 cureq 36767 curf 36769 curunc 36773 fnopabeqd 36892 cosseq 37599 lcvfbr 38193 cmtfvalN 38383 cvrfval 38441 dicffval 40348 dicfval 40349 dicval 40350 prjspval 41647 prjspnerlem 41661 0prjspn 41672 dnwech 42092 aomclem8 42105 tfsconcatun 42389 tfsconcat0i 42397 tfsconcatrev 42400 rfovcnvfvd 43060 fsovrfovd 43062 dfafn5a 46166 sprsymrelfv 46460 sprsymrelfo 46463 upwlksfval 46811 |
Copyright terms: Public domain | W3C validator |