| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1924 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2796 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5173 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5173 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2708 〈cop 4598 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-opab 5173 |
| This theorem is referenced by: opabbii 5177 mpteq12dva 5196 csbopab 5518 csbopabgALT 5519 csbmpt12 5520 xpeq1 5655 xpeq2 5662 opabbi2dv 5816 csbcnvgALT 5851 resopab2 6010 mptcnv 6115 cores 6225 xpco 6265 dffn5 6922 f1oiso2 7330 fvmptopab 7446 fvmptopabOLD 7447 f1ocnvd 7643 ofreq 7660 mptmpoopabbrd 8062 mptmpoopabbrdOLD 8063 mptmpoopabbrdOLDOLD 8065 bropopvvv 8072 bropfvvvv 8074 fnwelem 8113 sprmpod 8206 mpocurryd 8251 wemapwe 9657 ttrcleq 9669 xpcogend 14947 shftfval 15043 2shfti 15053 prdsval 17425 pwsle 17462 sectffval 17719 sectfval 17720 isfunc 17833 isfull 17881 isfth 17885 ipoval 18496 eqgfval 19115 eqg0subg 19135 dvdsrval 20277 dvdsrpropd 20332 ltbval 21957 opsrval 21960 lmfval 23126 xkocnv 23708 tgphaus 24011 isphtpc 24900 bcthlem1 25231 bcth 25236 dvcnp2 25828 dvmulbr 25848 dvcobr 25856 cmvth 25902 dvfsumle 25933 dvfsumlem2 25940 taylthlem2 26289 ulmval 26296 lgsquadlem3 27300 iscgrg 28446 legval 28518 ishlg 28536 perpln1 28644 perpln2 28645 isperp 28646 ishpg 28693 iscgra 28743 isinag 28772 isleag 28781 wksfval 29544 upgrtrls 29636 upgrspthswlk 29675 ajfval 30745 f1o3d 32558 f1od2 32651 mgcoval 32919 inftmrel 33141 isinftm 33142 erlval 33216 rlocval 33217 quslsm 33383 idlsrgval 33481 metidval 33887 faeval 34243 eulerpartlemgvv 34374 eulerpart 34380 afsval 34669 satf 35347 satfvsuc 35355 satfv1 35357 satf0suc 35370 sat1el2xp 35373 fmlasuc0 35378 bj-imdirvallem 37175 bj-imdirval2 37178 bj-imdirco 37185 bj-iminvval2 37189 cureq 37597 curf 37599 curunc 37603 fnopabeqd 37722 cosseq 38424 lcvfbr 39020 cmtfvalN 39210 cvrfval 39268 dicffval 41175 dicfval 41176 dicval 41177 prjspval 42598 prjspnerlem 42612 0prjspn 42623 dnwech 43044 aomclem8 43057 tfsconcatun 43333 tfsconcat0i 43341 tfsconcatrev 43344 rfovcnvfvd 44003 fsovrfovd 44005 dfafn5a 47165 sprsymrelfv 47499 sprsymrelfo 47502 upwlksfval 48127 sectpropdlem 49029 upfval 49169 upfval2 49170 upfval3 49171 uppropd 49174 |
| Copyright terms: Public domain | W3C validator |