Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 628 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
3 | 2 | 2exbidv 1928 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
4 | 3 | abbidv 2808 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
5 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 {cab 2715 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-opab 5133 |
This theorem is referenced by: opabbii 5137 mpteq12dva 5159 csbopab 5461 csbopabgALT 5462 csbmpt12 5463 xpeq1 5594 xpeq2 5601 opabbi2dv 5747 csbcnvgALT 5782 resopab2 5933 mptcnv 6032 cores 6142 xpco 6181 dffn5 6810 f1oiso2 7203 fvmptopab 7308 f1ocnvd 7498 ofreq 7515 mptmpoopabbrd 7894 bropopvvv 7901 bropfvvvv 7903 fnwelem 7943 sprmpod 8011 mpocurryd 8056 wemapwe 9385 xpcogend 14613 shftfval 14709 2shfti 14719 prdsval 17083 pwsle 17120 sectffval 17379 sectfval 17380 isfunc 17495 isfull 17542 isfth 17546 ipoval 18163 eqgfval 18719 dvdsrval 19802 dvdsrpropd 19853 ltbval 21154 opsrval 21157 lmfval 22291 xkocnv 22873 tgphaus 23176 isphtpc 24063 bcthlem1 24393 bcth 24398 ulmval 25444 lgsquadlem3 26435 iscgrg 26777 legval 26849 ishlg 26867 perpln1 26975 perpln2 26976 isperp 26977 ishpg 27024 iscgra 27074 isinag 27103 isleag 27112 wksfval 27879 upgrtrls 27971 upgrspthswlk 28007 ajfval 29072 f1o3d 30863 f1od2 30958 mgcoval 31166 inftmrel 31336 isinftm 31337 quslsm 31495 idlsrgval 31550 metidval 31742 faeval 32114 eulerpartlemgvv 32243 eulerpart 32249 afsval 32551 satf 33215 satfvsuc 33223 satfv1 33225 satf0suc 33238 sat1el2xp 33241 fmlasuc0 33246 ttrcleq 33695 bj-imdirvallem 35278 bj-imdirval2 35281 bj-imdirco 35288 bj-iminvval2 35292 cureq 35680 curf 35682 curunc 35686 fnopabeqd 35805 cosseq 36476 lcvfbr 36961 cmtfvalN 37151 cvrfval 37209 dicffval 39115 dicfval 39116 dicval 39117 prjspval 40363 prjspnerlem 40377 0prjspn 40386 dnwech 40789 aomclem8 40802 rfovcnvfvd 41504 fsovrfovd 41506 dfafn5a 44539 sprsymrelfv 44834 sprsymrelfo 44837 upwlksfval 45185 |
Copyright terms: Public domain | W3C validator |