![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
3 | 2 | 2exbidv 1923 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
4 | 3 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
5 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-opab 5229 |
This theorem is referenced by: opabbii 5233 mpteq12dva 5255 csbopab 5574 csbopabgALT 5575 csbmpt12 5576 xpeq1 5714 xpeq2 5721 opabbi2dv 5874 csbcnvgALT 5909 resopab2 6065 mptcnv 6171 cores 6280 xpco 6320 dffn5 6980 f1oiso2 7388 fvmptopab 7504 fvmptopabOLD 7505 f1ocnvd 7701 ofreq 7718 mptmpoopabbrd 8121 mptmpoopabbrdOLD 8122 mptmpoopabbrdOLDOLD 8124 bropopvvv 8131 bropfvvvv 8133 fnwelem 8172 sprmpod 8265 mpocurryd 8310 wemapwe 9766 ttrcleq 9778 xpcogend 15023 shftfval 15119 2shfti 15129 prdsval 17515 pwsle 17552 sectffval 17811 sectfval 17812 isfunc 17928 isfull 17977 isfth 17981 ipoval 18600 eqgfval 19216 eqg0subg 19236 dvdsrval 20387 dvdsrpropd 20442 ltbval 22084 opsrval 22087 lmfval 23261 xkocnv 23843 tgphaus 24146 isphtpc 25045 bcthlem1 25377 bcth 25382 dvcnp2 25975 dvmulbr 25995 dvcobr 26003 cmvth 26049 dvfsumle 26080 dvfsumlem2 26087 taylthlem2 26434 ulmval 26441 lgsquadlem3 27444 iscgrg 28538 legval 28610 ishlg 28628 perpln1 28736 perpln2 28737 isperp 28738 ishpg 28785 iscgra 28835 isinag 28864 isleag 28873 wksfval 29645 upgrtrls 29737 upgrspthswlk 29774 ajfval 30841 f1o3d 32646 f1od2 32735 mgcoval 32959 inftmrel 33160 isinftm 33161 erlval 33230 rlocval 33231 quslsm 33398 idlsrgval 33496 metidval 33836 faeval 34210 eulerpartlemgvv 34341 eulerpart 34347 afsval 34648 satf 35321 satfvsuc 35329 satfv1 35331 satf0suc 35344 sat1el2xp 35347 fmlasuc0 35352 bj-imdirvallem 37146 bj-imdirval2 37149 bj-imdirco 37156 bj-iminvval2 37160 cureq 37556 curf 37558 curunc 37562 fnopabeqd 37681 cosseq 38382 lcvfbr 38976 cmtfvalN 39166 cvrfval 39224 dicffval 41131 dicfval 41132 dicval 41133 prjspval 42558 prjspnerlem 42572 0prjspn 42583 dnwech 43005 aomclem8 43018 tfsconcatun 43299 tfsconcat0i 43307 tfsconcatrev 43310 rfovcnvfvd 43969 fsovrfovd 43971 dfafn5a 47075 sprsymrelfv 47368 sprsymrelfo 47371 upwlksfval 47858 |
Copyright terms: Public domain | W3C validator |