| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1924 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5170 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5170 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2707 〈cop 4595 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-opab 5170 |
| This theorem is referenced by: opabbii 5174 mpteq12dva 5193 csbopab 5515 csbopabgALT 5516 csbmpt12 5517 xpeq1 5652 xpeq2 5659 opabbi2dv 5813 csbcnvgALT 5848 resopab2 6007 mptcnv 6112 cores 6222 xpco 6262 dffn5 6919 f1oiso2 7327 fvmptopab 7443 fvmptopabOLD 7444 f1ocnvd 7640 ofreq 7657 mptmpoopabbrd 8059 mptmpoopabbrdOLD 8060 mptmpoopabbrdOLDOLD 8062 bropopvvv 8069 bropfvvvv 8071 fnwelem 8110 sprmpod 8203 mpocurryd 8248 wemapwe 9650 ttrcleq 9662 xpcogend 14940 shftfval 15036 2shfti 15046 prdsval 17418 pwsle 17455 sectffval 17712 sectfval 17713 isfunc 17826 isfull 17874 isfth 17878 ipoval 18489 eqgfval 19108 eqg0subg 19128 dvdsrval 20270 dvdsrpropd 20325 ltbval 21950 opsrval 21953 lmfval 23119 xkocnv 23701 tgphaus 24004 isphtpc 24893 bcthlem1 25224 bcth 25229 dvcnp2 25821 dvmulbr 25841 dvcobr 25849 cmvth 25895 dvfsumle 25926 dvfsumlem2 25933 taylthlem2 26282 ulmval 26289 lgsquadlem3 27293 iscgrg 28439 legval 28511 ishlg 28529 perpln1 28637 perpln2 28638 isperp 28639 ishpg 28686 iscgra 28736 isinag 28765 isleag 28774 wksfval 29537 upgrtrls 29629 upgrspthswlk 29668 ajfval 30738 f1o3d 32551 f1od2 32644 mgcoval 32912 inftmrel 33134 isinftm 33135 erlval 33209 rlocval 33210 quslsm 33376 idlsrgval 33474 metidval 33880 faeval 34236 eulerpartlemgvv 34367 eulerpart 34373 afsval 34662 satf 35340 satfvsuc 35348 satfv1 35350 satf0suc 35363 sat1el2xp 35366 fmlasuc0 35371 bj-imdirvallem 37168 bj-imdirval2 37171 bj-imdirco 37178 bj-iminvval2 37182 cureq 37590 curf 37592 curunc 37596 fnopabeqd 37715 cosseq 38417 lcvfbr 39013 cmtfvalN 39203 cvrfval 39261 dicffval 41168 dicfval 41169 dicval 41170 prjspval 42591 prjspnerlem 42605 0prjspn 42616 dnwech 43037 aomclem8 43050 tfsconcatun 43326 tfsconcat0i 43334 tfsconcatrev 43337 rfovcnvfvd 43996 fsovrfovd 43998 dfafn5a 47161 sprsymrelfv 47495 sprsymrelfo 47498 upwlksfval 48123 sectpropdlem 49025 upfval 49165 upfval2 49166 upfval3 49167 uppropd 49170 |
| Copyright terms: Public domain | W3C validator |