| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1924 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2801 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2713 〈cop 4607 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-opab 5182 |
| This theorem is referenced by: opabbii 5186 mpteq12dva 5206 csbopab 5530 csbopabgALT 5531 csbmpt12 5532 xpeq1 5668 xpeq2 5675 opabbi2dv 5829 csbcnvgALT 5864 resopab2 6023 mptcnv 6128 cores 6238 xpco 6278 dffn5 6937 f1oiso2 7345 fvmptopab 7461 fvmptopabOLD 7462 f1ocnvd 7658 ofreq 7675 mptmpoopabbrd 8079 mptmpoopabbrdOLD 8080 mptmpoopabbrdOLDOLD 8082 bropopvvv 8089 bropfvvvv 8091 fnwelem 8130 sprmpod 8223 mpocurryd 8268 wemapwe 9711 ttrcleq 9723 xpcogend 14993 shftfval 15089 2shfti 15099 prdsval 17469 pwsle 17506 sectffval 17763 sectfval 17764 isfunc 17877 isfull 17925 isfth 17929 ipoval 18540 eqgfval 19159 eqg0subg 19179 dvdsrval 20321 dvdsrpropd 20376 ltbval 22001 opsrval 22004 lmfval 23170 xkocnv 23752 tgphaus 24055 isphtpc 24944 bcthlem1 25276 bcth 25281 dvcnp2 25873 dvmulbr 25893 dvcobr 25901 cmvth 25947 dvfsumle 25978 dvfsumlem2 25985 taylthlem2 26334 ulmval 26341 lgsquadlem3 27345 iscgrg 28491 legval 28563 ishlg 28581 perpln1 28689 perpln2 28690 isperp 28691 ishpg 28738 iscgra 28788 isinag 28817 isleag 28826 wksfval 29589 upgrtrls 29681 upgrspthswlk 29720 ajfval 30790 f1o3d 32605 f1od2 32698 mgcoval 32966 inftmrel 33178 isinftm 33179 erlval 33253 rlocval 33254 quslsm 33420 idlsrgval 33518 metidval 33921 faeval 34277 eulerpartlemgvv 34408 eulerpart 34414 afsval 34703 satf 35375 satfvsuc 35383 satfv1 35385 satf0suc 35398 sat1el2xp 35401 fmlasuc0 35406 bj-imdirvallem 37198 bj-imdirval2 37201 bj-imdirco 37208 bj-iminvval2 37212 cureq 37620 curf 37622 curunc 37626 fnopabeqd 37745 cosseq 38444 lcvfbr 39038 cmtfvalN 39228 cvrfval 39286 dicffval 41193 dicfval 41194 dicval 41195 prjspval 42626 prjspnerlem 42640 0prjspn 42651 dnwech 43072 aomclem8 43085 tfsconcatun 43361 tfsconcat0i 43369 tfsconcatrev 43372 rfovcnvfvd 44031 fsovrfovd 44033 dfafn5a 47189 sprsymrelfv 47508 sprsymrelfo 47511 upwlksfval 48110 sectpropdlem 49003 upfval 49111 upfval2 49112 upfval3 49113 |
| Copyright terms: Public domain | W3C validator |