Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
3 | 2 | 2exbidv 1928 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
4 | 3 | abbidv 2808 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
5 | df-opab 5138 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | df-opab 5138 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 {cab 2716 〈cop 4568 {copab 5137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-opab 5138 |
This theorem is referenced by: opabbii 5142 mpteq12dva 5164 csbopab 5469 csbopabgALT 5470 csbmpt12 5471 xpeq1 5604 xpeq2 5611 opabbi2dv 5761 csbcnvgALT 5796 resopab2 5947 mptcnv 6048 cores 6157 xpco 6196 dffn5 6837 f1oiso2 7232 fvmptopab 7338 fvmptopabOLD 7339 f1ocnvd 7529 ofreq 7546 mptmpoopabbrd 7930 mptmpoopabbrdOLD 7932 bropopvvv 7939 bropfvvvv 7941 fnwelem 7981 sprmpod 8049 mpocurryd 8094 wemapwe 9464 ttrcleq 9476 xpcogend 14694 shftfval 14790 2shfti 14800 prdsval 17175 pwsle 17212 sectffval 17471 sectfval 17472 isfunc 17588 isfull 17635 isfth 17639 ipoval 18257 eqgfval 18813 dvdsrval 19896 dvdsrpropd 19947 ltbval 21253 opsrval 21256 lmfval 22392 xkocnv 22974 tgphaus 23277 isphtpc 24166 bcthlem1 24497 bcth 24502 ulmval 25548 lgsquadlem3 26539 iscgrg 26882 legval 26954 ishlg 26972 perpln1 27080 perpln2 27081 isperp 27082 ishpg 27129 iscgra 27179 isinag 27208 isleag 27217 wksfval 27985 upgrtrls 28078 upgrspthswlk 28115 ajfval 29180 f1o3d 30971 f1od2 31065 mgcoval 31273 inftmrel 31443 isinftm 31444 quslsm 31602 idlsrgval 31657 metidval 31849 faeval 32223 eulerpartlemgvv 32352 eulerpart 32358 afsval 32660 satf 33324 satfvsuc 33332 satfv1 33334 satf0suc 33347 sat1el2xp 33350 fmlasuc0 33355 bj-imdirvallem 35360 bj-imdirval2 35363 bj-imdirco 35370 bj-iminvval2 35374 cureq 35762 curf 35764 curunc 35768 fnopabeqd 35887 cosseq 36556 lcvfbr 37041 cmtfvalN 37231 cvrfval 37289 dicffval 39195 dicfval 39196 dicval 39197 prjspval 40449 prjspnerlem 40463 0prjspn 40472 dnwech 40880 aomclem8 40893 rfovcnvfvd 41622 fsovrfovd 41624 dfafn5a 44663 sprsymrelfv 44957 sprsymrelfo 44960 upwlksfval 45308 |
Copyright terms: Public domain | W3C validator |