![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
3 | 2 | 2exbidv 1921 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
4 | 3 | abbidv 2805 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
5 | df-opab 5210 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | df-opab 5210 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2799 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 {cab 2711 〈cop 4636 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-opab 5210 |
This theorem is referenced by: opabbii 5214 mpteq12dva 5236 csbopab 5564 csbopabgALT 5565 csbmpt12 5566 xpeq1 5702 xpeq2 5709 opabbi2dv 5862 csbcnvgALT 5897 resopab2 6055 mptcnv 6161 cores 6270 xpco 6310 dffn5 6966 f1oiso2 7371 fvmptopab 7486 fvmptopabOLD 7487 f1ocnvd 7683 ofreq 7700 mptmpoopabbrd 8103 mptmpoopabbrdOLD 8104 mptmpoopabbrdOLDOLD 8106 bropopvvv 8113 bropfvvvv 8115 fnwelem 8154 sprmpod 8247 mpocurryd 8292 wemapwe 9734 ttrcleq 9746 xpcogend 15009 shftfval 15105 2shfti 15115 prdsval 17501 pwsle 17538 sectffval 17797 sectfval 17798 isfunc 17914 isfull 17963 isfth 17967 ipoval 18587 eqgfval 19206 eqg0subg 19226 dvdsrval 20377 dvdsrpropd 20432 ltbval 22078 opsrval 22081 lmfval 23255 xkocnv 23837 tgphaus 24140 isphtpc 25039 bcthlem1 25371 bcth 25376 dvcnp2 25969 dvmulbr 25989 dvcobr 25997 cmvth 26043 dvfsumle 26074 dvfsumlem2 26081 taylthlem2 26430 ulmval 26437 lgsquadlem3 27440 iscgrg 28534 legval 28606 ishlg 28624 perpln1 28732 perpln2 28733 isperp 28734 ishpg 28781 iscgra 28831 isinag 28860 isleag 28869 wksfval 29641 upgrtrls 29733 upgrspthswlk 29770 ajfval 30837 f1o3d 32643 f1od2 32738 mgcoval 32960 inftmrel 33169 isinftm 33170 erlval 33244 rlocval 33245 quslsm 33412 idlsrgval 33510 metidval 33850 faeval 34226 eulerpartlemgvv 34357 eulerpart 34363 afsval 34664 satf 35337 satfvsuc 35345 satfv1 35347 satf0suc 35360 sat1el2xp 35363 fmlasuc0 35368 bj-imdirvallem 37162 bj-imdirval2 37165 bj-imdirco 37172 bj-iminvval2 37176 cureq 37582 curf 37584 curunc 37588 fnopabeqd 37707 cosseq 38407 lcvfbr 39001 cmtfvalN 39191 cvrfval 39249 dicffval 41156 dicfval 41157 dicval 41158 prjspval 42589 prjspnerlem 42603 0prjspn 42614 dnwech 43036 aomclem8 43049 tfsconcatun 43326 tfsconcat0i 43334 tfsconcatrev 43337 rfovcnvfvd 43996 fsovrfovd 43998 dfafn5a 47109 sprsymrelfv 47418 sprsymrelfo 47421 upwlksfval 47978 |
Copyright terms: Public domain | W3C validator |