Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | anbi2d 629 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
3 | 2 | 2exbidv 1926 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
4 | 3 | abbidv 2805 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
5 | df-opab 5155 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | df-opab 5155 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
7 | 4, 5, 6 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 {cab 2713 〈cop 4579 {copab 5154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-opab 5155 |
This theorem is referenced by: opabbii 5159 mpteq12dva 5181 csbopab 5499 csbopabgALT 5500 csbmpt12 5501 xpeq1 5634 xpeq2 5641 opabbi2dv 5791 csbcnvgALT 5826 resopab2 5976 mptcnv 6078 cores 6187 xpco 6227 dffn5 6884 f1oiso2 7279 fvmptopab 7391 fvmptopabOLD 7392 f1ocnvd 7582 ofreq 7599 mptmpoopabbrd 7989 mptmpoopabbrdOLD 7991 bropopvvv 7998 bropfvvvv 8000 fnwelem 8039 sprmpod 8110 mpocurryd 8155 wemapwe 9554 ttrcleq 9566 xpcogend 14784 shftfval 14880 2shfti 14890 prdsval 17263 pwsle 17300 sectffval 17559 sectfval 17560 isfunc 17676 isfull 17723 isfth 17727 ipoval 18345 eqgfval 18900 dvdsrval 19982 dvdsrpropd 20033 ltbval 21350 opsrval 21353 lmfval 22489 xkocnv 23071 tgphaus 23374 isphtpc 24263 bcthlem1 24594 bcth 24599 ulmval 25645 lgsquadlem3 26636 iscgrg 27162 legval 27234 ishlg 27252 perpln1 27360 perpln2 27361 isperp 27362 ishpg 27409 iscgra 27459 isinag 27488 isleag 27497 wksfval 28265 upgrtrls 28357 upgrspthswlk 28394 ajfval 29459 f1o3d 31249 f1od2 31343 mgcoval 31551 inftmrel 31721 isinftm 31722 quslsm 31890 idlsrgval 31945 metidval 32138 faeval 32512 eulerpartlemgvv 32643 eulerpart 32649 afsval 32951 satf 33614 satfvsuc 33622 satfv1 33624 satf0suc 33637 sat1el2xp 33640 fmlasuc0 33645 bj-imdirvallem 35464 bj-imdirval2 35467 bj-imdirco 35474 bj-iminvval2 35478 cureq 35866 curf 35868 curunc 35872 fnopabeqd 35991 cosseq 36701 lcvfbr 37295 cmtfvalN 37485 cvrfval 37543 dicffval 39450 dicfval 39451 dicval 39452 prjspval 40710 prjspnerlem 40724 0prjspn 40735 dnwech 41144 aomclem8 41157 rfovcnvfvd 41944 fsovrfovd 41946 dfafn5a 45011 sprsymrelfv 45305 sprsymrelfo 45308 upwlksfval 45656 |
Copyright terms: Public domain | W3C validator |