| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1925 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2797 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5154 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5154 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 〈cop 4582 {copab 5153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-opab 5154 |
| This theorem is referenced by: opabbii 5158 mpteq12dva 5177 csbopab 5495 csbopabgALT 5496 csbmpt12 5497 xpeq1 5630 xpeq2 5637 opabbi2dv 5789 csbcnvgALT 5824 resopab2 5985 mptcnv 6086 cores 6196 xpco 6236 dffn5 6880 f1oiso2 7286 fvmptopab 7401 f1ocnvd 7597 ofreq 7614 mptmpoopabbrd 8012 mptmpoopabbrdOLD 8013 bropopvvv 8020 bropfvvvv 8022 fnwelem 8061 sprmpod 8154 mpocurryd 8199 wemapwe 9587 ttrcleq 9599 xpcogend 14878 shftfval 14974 2shfti 14984 prdsval 17356 pwsle 17393 sectffval 17654 sectfval 17655 isfunc 17768 isfull 17816 isfth 17820 ipoval 18433 eqgfval 19086 eqg0subg 19106 dvdsrval 20277 dvdsrpropd 20332 ltbval 21976 opsrval 21979 lmfval 23145 xkocnv 23727 tgphaus 24030 isphtpc 24918 bcthlem1 25249 bcth 25254 dvcnp2 25846 dvmulbr 25866 dvcobr 25874 cmvth 25920 dvfsumle 25951 dvfsumlem2 25958 taylthlem2 26307 ulmval 26314 lgsquadlem3 27318 iscgrg 28488 legval 28560 ishlg 28578 perpln1 28686 perpln2 28687 isperp 28688 ishpg 28735 iscgra 28785 isinag 28814 isleag 28823 wksfval 29586 upgrtrls 29676 upgrspthswlk 29714 ajfval 30784 f1o3d 32603 f1od2 32697 mgcoval 32962 inftmrel 33144 isinftm 33145 erlval 33220 rlocval 33221 quslsm 33365 idlsrgval 33463 metidval 33898 faeval 34254 eulerpartlemgvv 34384 eulerpart 34390 afsval 34679 satf 35385 satfvsuc 35393 satfv1 35395 satf0suc 35408 sat1el2xp 35411 fmlasuc0 35416 bj-imdirvallem 37213 bj-imdirval2 37216 bj-imdirco 37223 bj-iminvval2 37227 cureq 37635 curf 37637 curunc 37641 fnopabeqd 37760 cosseq 38462 lcvfbr 39058 cmtfvalN 39248 cvrfval 39306 dicffval 41212 dicfval 41213 dicval 41214 prjspval 42635 prjspnerlem 42649 0prjspn 42660 dnwech 43080 aomclem8 43093 tfsconcatun 43369 tfsconcat0i 43377 tfsconcatrev 43380 rfovcnvfvd 44039 fsovrfovd 44041 dfafn5a 47190 sprsymrelfv 47524 sprsymrelfo 47527 upwlksfval 48165 sectpropdlem 49067 upfval 49207 upfval2 49208 upfval3 49209 uppropd 49212 |
| Copyright terms: Public domain | W3C validator |