| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabbidv | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opabbidv | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbidv.1 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | anbi2d 630 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 3 | 2 | 2exbidv 1925 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒))) |
| 4 | 3 | abbidv 2799 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)}) |
| 5 | df-opab 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 6 | df-opab 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜒} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜒)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} = {〈𝑥, 𝑦〉 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2711 〈cop 4581 {copab 5155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-opab 5156 |
| This theorem is referenced by: opabbii 5160 mpteq12dva 5179 csbopab 5498 csbopabgALT 5499 csbmpt12 5500 xpeq1 5633 xpeq2 5640 opabbi2dv 5793 csbcnvgALT 5828 resopab2 5989 mptcnv 6090 cores 6201 xpco 6241 dffn5 6886 f1oiso2 7292 fvmptopab 7407 f1ocnvd 7603 ofreq 7620 mptmpoopabbrd 8018 mptmpoopabbrdOLD 8019 bropopvvv 8026 bropfvvvv 8028 fnwelem 8067 sprmpod 8160 mpocurryd 8205 wemapwe 9594 ttrcleq 9606 xpcogend 14883 shftfval 14979 2shfti 14989 prdsval 17361 pwsle 17398 sectffval 17659 sectfval 17660 isfunc 17773 isfull 17821 isfth 17825 ipoval 18438 eqgfval 19090 eqg0subg 19110 dvdsrval 20281 dvdsrpropd 20336 ltbval 21979 opsrval 21982 lmfval 23148 xkocnv 23730 tgphaus 24033 isphtpc 24921 bcthlem1 25252 bcth 25257 dvcnp2 25849 dvmulbr 25869 dvcobr 25877 cmvth 25923 dvfsumle 25954 dvfsumlem2 25961 taylthlem2 26310 ulmval 26317 lgsquadlem3 27321 iscgrg 28491 legval 28563 ishlg 28581 perpln1 28689 perpln2 28690 isperp 28691 ishpg 28738 iscgra 28788 isinag 28817 isleag 28826 wksfval 29590 upgrtrls 29680 upgrspthswlk 29718 ajfval 30791 f1o3d 32610 f1od2 32706 mgcoval 32974 inftmrel 33156 isinftm 33157 erlval 33232 rlocval 33233 quslsm 33377 idlsrgval 33475 metidval 33924 faeval 34280 eulerpartlemgvv 34410 eulerpart 34416 afsval 34705 satf 35418 satfvsuc 35426 satfv1 35428 satf0suc 35441 sat1el2xp 35444 fmlasuc0 35449 bj-imdirvallem 37245 bj-imdirval2 37248 bj-imdirco 37255 bj-iminvval2 37259 cureq 37656 curf 37658 curunc 37662 fnopabeqd 37781 ecxrncnvep 38453 cosseq 38548 lcvfbr 39139 cmtfvalN 39329 cvrfval 39387 dicffval 41293 dicfval 41294 dicval 41295 prjspval 42721 prjspnerlem 42735 0prjspn 42746 dnwech 43165 aomclem8 43178 tfsconcatun 43454 tfsconcat0i 43462 tfsconcatrev 43465 rfovcnvfvd 44124 fsovrfovd 44126 dfafn5a 47284 sprsymrelfv 47618 sprsymrelfo 47621 upwlksfval 48259 sectpropdlem 49161 upfval 49301 upfval2 49302 upfval3 49303 uppropd 49306 |
| Copyright terms: Public domain | W3C validator |