| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofeq | ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 2 | 1 | ofeqd 7621 | 1 ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∘f cof 7617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-ss 3916 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 |
| This theorem is referenced by: resspsrvsca 21924 sitmval 34373 mhphf2 42706 mendplusgfval 43288 mendvscafval 43293 |
| Copyright terms: Public domain | W3C validator |