Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
2 | 1 | ofeqd 7535 | 1 ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∘f cof 7531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 |
This theorem is referenced by: resspsrvsca 21187 sitmval 32316 mhphf2 40286 mendplusgfval 41010 mendvscafval 41015 |
Copyright terms: Public domain | W3C validator |