![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
2 | 1 | ofeqd 7718 | 1 ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∘f cof 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6527 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 |
This theorem is referenced by: resspsrvsca 22022 sitmval 34316 mhphf2 42555 mendplusgfval 43144 mendvscafval 43149 |
Copyright terms: Public domain | W3C validator |