Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Structured version   Visualization version   GIF version

Theorem ofeq 7396
 Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆)
21oveqd 7157 . . . 4 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 5138 . . 3 ((𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpoeq3dva 7215 . 2 (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 7394 . 2 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 7394 . 2 f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2882 1 (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  Vcvv 3469   ∩ cin 3907   ↦ cmpt 5122  dom cdm 5532  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142   ∘f cof 7392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-ral 3135  df-v 3471  df-in 3915  df-ss 3925  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-iota 6293  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394 This theorem is referenced by:  psrval  20598  resspsradd  20652  resspsrvsca  20654  fedgmullem1  31082  fedgmullem2  31083  sitmval  31681  ldualset  36379  mendval  40057  mendplusgfval  40059  mendvscafval  40064
 Copyright terms: Public domain W3C validator