![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1167 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆) | |
2 | 1 | oveqd 6896 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | mpteq2dv 4939 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
4 | 3 | mpt2eq3dva 6954 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
5 | df-of 7132 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | df-of 7132 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
7 | 4, 5, 6 | 3eqtr4g 2859 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ∩ cin 3769 ↦ cmpt 4923 dom cdm 5313 ‘cfv 6102 (class class class)co 6879 ↦ cmpt2 6881 ∘𝑓 cof 7130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-iota 6065 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 |
This theorem is referenced by: psrval 19684 resspsradd 19738 resspsrvsca 19740 sitmval 30926 ldualset 35145 mendval 38533 mendplusgfval 38535 mendvscafval 38540 |
Copyright terms: Public domain | W3C validator |