| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofeq | ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 2 | 1 | ofeqd 7607 | 1 ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∘f cof 7603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-ss 3917 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-iota 6433 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 |
| This theorem is referenced by: resspsrvsca 21907 sitmval 34352 mhphf2 42610 mendplusgfval 43193 mendvscafval 43198 |
| Copyright terms: Public domain | W3C validator |