MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Structured version   Visualization version   GIF version

Theorem ofeq 7656
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeq
StepHypRef Expression
1 id 22 . 2 (𝑅 = 𝑆𝑅 = 𝑆)
21ofeqd 7655 1 (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by:  resspsrvsca  21886  sitmval  34340  mhphf2  42586  mendplusgfval  43170  mendvscafval  43175
  Copyright terms: Public domain W3C validator