![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofeq | Structured version Visualization version GIF version |
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
ofeq | ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
2 | 1 | ofeqd 7706 | 1 ⊢ (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∘f cof 7702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-ss 3983 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-iota 6522 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 |
This theorem is referenced by: resspsrvsca 22024 sitmval 34345 mhphf2 42601 mendplusgfval 43186 mendvscafval 43191 |
Copyright terms: Public domain | W3C validator |