MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Structured version   Visualization version   GIF version

Theorem ofeq 7622
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeq
StepHypRef Expression
1 id 22 . 2 (𝑅 = 𝑆𝑅 = 𝑆)
21ofeqd 7621 1 (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  f cof 7617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3440  df-ss 3916  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-iota 6445  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619
This theorem is referenced by:  resspsrvsca  21924  sitmval  34373  mhphf2  42706  mendplusgfval  43288  mendvscafval  43293
  Copyright terms: Public domain W3C validator