MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Structured version   Visualization version   GIF version

Theorem ofeq 7707
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeq
StepHypRef Expression
1 id 22 . 2 (𝑅 = 𝑆𝑅 = 𝑆)
21ofeqd 7706 1 (𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  f cof 7702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-ss 3983  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-iota 6522  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704
This theorem is referenced by:  resspsrvsca  22024  sitmval  34345  mhphf2  42601  mendplusgfval  43186  mendvscafval  43191
  Copyright terms: Public domain W3C validator