Proof of Theorem nnm1nn0
Step | Hyp | Ref
| Expression |
1 | | nn1m1nn 11924 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈
ℕ)) |
2 | | oveq1 7262 |
. . . . . 6
⊢ (𝑁 = 1 → (𝑁 − 1) = (1 −
1)) |
3 | | 1m1e0 11975 |
. . . . . 6
⊢ (1
− 1) = 0 |
4 | 2, 3 | eqtrdi 2795 |
. . . . 5
⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
5 | 4 | orim1i 906 |
. . . 4
⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈
ℕ)) |
6 | 1, 5 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) = 0 ∨ (𝑁 − 1) ∈
ℕ)) |
7 | 6 | orcomd 867 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℕ ∨
(𝑁 − 1) =
0)) |
8 | | elnn0 12165 |
. 2
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) =
0)) |
9 | 7, 8 | sylibr 233 |
1
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |