Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   GIF version

Theorem xrge0iifhom 32518
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifhom ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐹   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 11202 . . . . . 6 0 ∈ ℝ*
2 1xr 11214 . . . . . 6 1 ∈ ℝ*
3 0le1 11678 . . . . . 6 0 ≤ 1
4 snunioc 13397 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
51, 2, 3, 4mp3an 1461 . . . . 5 ({0} ∪ (0(,]1)) = (0[,]1)
65eleq2i 2829 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ 𝑌 ∈ (0[,]1))
7 elun 4108 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
86, 7bitr3i 276 . . 3 (𝑌 ∈ (0[,]1) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
9 elsni 4603 . . . 4 (𝑌 ∈ {0} → 𝑌 = 0)
109orim1i 908 . . 3 ((𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
118, 10sylbi 216 . 2 (𝑌 ∈ (0[,]1) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
12 0elunit 13386 . . . . . . . 8 0 ∈ (0[,]1)
13 iftrue 4492 . . . . . . . . 9 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
14 xrge0iifhmeo.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
15 pnfex 11208 . . . . . . . . 9 +∞ ∈ V
1613, 14, 15fvmpt 6948 . . . . . . . 8 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
1712, 16ax-mp 5 . . . . . . 7 (𝐹‘0) = +∞
1817oveq2i 7368 . . . . . 6 ((𝐹𝑋) +𝑒 (𝐹‘0)) = ((𝐹𝑋) +𝑒 +∞)
19 eqeq1 2740 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
20 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
2120negeqd 11395 . . . . . . . . . . 11 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
2219, 21ifbieq2d 4512 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
23 negex 11399 . . . . . . . . . . 11 -(log‘𝑋) ∈ V
2415, 23ifex 4536 . . . . . . . . . 10 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
2522, 14, 24fvmpt 6948 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
26 pnfxr 11209 . . . . . . . . . . 11 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ∈ ℝ*)
28 elunitrn 13384 . . . . . . . . . . . . . . 15 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
30 elunitge0 32480 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (0[,]1) → 0 ≤ 𝑋)
3130adantr 481 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 ≤ 𝑋)
32 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
3332neqned 2950 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
3429, 31, 33ne0gt0d 11292 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 < 𝑋)
3529, 34elrpd 12954 . . . . . . . . . . . . 13 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ+)
3635relogcld 25978 . . . . . . . . . . . 12 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → (log‘𝑋) ∈ ℝ)
3736renegcld 11582 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ)
3837rexrd 11205 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ*)
3927, 38ifclda 4521 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ ℝ*)
4025, 39eqeltrd 2838 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ∈ ℝ*)
4140adantr 481 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ∈ ℝ*)
42 neeq1 3006 . . . . . . . . . 10 (+∞ = if(𝑋 = 0, +∞, -(log‘𝑋)) → (+∞ ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
43 neeq1 3006 . . . . . . . . . 10 (-(log‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)) → (-(log‘𝑋) ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
44 pnfnemnf 11210 . . . . . . . . . . 11 +∞ ≠ -∞
4544a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ≠ -∞)
4637renemnfd 11207 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ≠ -∞)
4742, 43, 45, 46ifbothda 4524 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞)
4825, 47eqnetrd 3011 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ≠ -∞)
4948adantr 481 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ≠ -∞)
50 xaddpnf1 13145 . . . . . . 7 (((𝐹𝑋) ∈ ℝ* ∧ (𝐹𝑋) ≠ -∞) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5141, 49, 50syl2anc 584 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5218, 51eqtrid 2788 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = +∞)
53 unitsscn 13417 . . . . . . . . 9 (0[,]1) ⊆ ℂ
54 simpl 483 . . . . . . . . 9 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ (0[,]1))
5553, 54sselid 3942 . . . . . . . 8 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
5655mul01d 11354 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
5756fveq2d 6846 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = (𝐹‘0))
5857, 17eqtrdi 2792 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = +∞)
5952, 58eqtr4d 2779 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = (𝐹‘(𝑋 · 0)))
60 simpr 485 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑌 = 0)
6160fveq2d 6846 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑌) = (𝐹‘0))
6261oveq2d 7373 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹𝑋) +𝑒 (𝐹‘0)))
6360oveq2d 7373 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
6463fveq2d 6846 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 0)))
6559, 62, 643eqtr4rd 2787 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
665eleq2i 2829 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ 𝑋 ∈ (0[,]1))
67 elun 4108 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
6866, 67bitr3i 276 . . . . 5 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
69 elsni 4603 . . . . . 6 (𝑋 ∈ {0} → 𝑋 = 0)
7069orim1i 908 . . . . 5 ((𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7168, 70sylbi 216 . . . 4 (𝑋 ∈ (0[,]1) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7217oveq1i 7367 . . . . . . . 8 ((𝐹‘0) +𝑒 (𝐹𝑌)) = (+∞ +𝑒 (𝐹𝑌))
73 simpr 485 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
7414xrge0iifcv 32515 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → (𝐹𝑌) = -(log‘𝑌))
75 0le0 12254 . . . . . . . . . . . . . . . . 17 0 ≤ 0
76 1re 11155 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
77 ltpnf 13041 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → 1 < +∞)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . . 17 1 < +∞
79 iocssioo 13356 . . . . . . . . . . . . . . . . 17 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
801, 26, 75, 78, 79mp4an 691 . . . . . . . . . . . . . . . 16 (0(,]1) ⊆ (0(,)+∞)
81 ioorp 13342 . . . . . . . . . . . . . . . 16 (0(,)+∞) = ℝ+
8280, 81sseqtri 3980 . . . . . . . . . . . . . . 15 (0(,]1) ⊆ ℝ+
8382sseli 3940 . . . . . . . . . . . . . 14 (𝑌 ∈ (0(,]1) → 𝑌 ∈ ℝ+)
8483relogcld 25978 . . . . . . . . . . . . 13 (𝑌 ∈ (0(,]1) → (log‘𝑌) ∈ ℝ)
8584renegcld 11582 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → -(log‘𝑌) ∈ ℝ)
8674, 85eqeltrd 2838 . . . . . . . . . . 11 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ)
8786rexrd 11205 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ*)
8873, 87syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ∈ ℝ*)
8986renemnfd 11207 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ≠ -∞)
9073, 89syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ≠ -∞)
91 xaddpnf2 13146 . . . . . . . . 9 (((𝐹𝑌) ∈ ℝ* ∧ (𝐹𝑌) ≠ -∞) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9288, 90, 91syl2anc 584 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9372, 92eqtrid 2788 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = +∞)
94 rpssre 12922 . . . . . . . . . . . . 13 + ⊆ ℝ
9582, 94sstri 3953 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ
96 ax-resscn 11108 . . . . . . . . . . . 12 ℝ ⊆ ℂ
9795, 96sstri 3953 . . . . . . . . . . 11 (0(,]1) ⊆ ℂ
9897, 73sselid 3942 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℂ)
9998mul02d 11353 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (0 · 𝑌) = 0)
10099fveq2d 6846 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = (𝐹‘0))
101100, 17eqtrdi 2792 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = +∞)
10293, 101eqtr4d 2779 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = (𝐹‘(0 · 𝑌)))
103 simpl 483 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑋 = 0)
104103fveq2d 6846 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑋) = (𝐹‘0))
105104oveq1d 7372 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹‘0) +𝑒 (𝐹𝑌)))
106103fvoveq1d 7379 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(0 · 𝑌)))
107102, 105, 1063eqtr4rd 2787 . . . . 5 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
108 simpl 483 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0(,]1))
10982, 108sselid 3942 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ+)
110109relogcld 25978 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℝ)
111110renegcld 11582 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑋) ∈ ℝ)
112 simpr 485 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
11382, 112sselid 3942 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ+)
114113relogcld 25978 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℝ)
115114renegcld 11582 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑌) ∈ ℝ)
116 rexadd 13151 . . . . . . 7 ((-(log‘𝑋) ∈ ℝ ∧ -(log‘𝑌) ∈ ℝ) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
117111, 115, 116syl2anc 584 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
11814xrge0iifcv 32515 . . . . . . 7 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
119118, 74oveqan12d 7376 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = (-(log‘𝑋) +𝑒 -(log‘𝑌)))
120109rpred 12957 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ)
121113rpred 12957 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ)
122120, 121remulcld 11185 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ ℝ)
123109rpgt0d 12960 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑋)
124113rpgt0d 12960 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑌)
125120, 121, 123, 124mulgt0d 11310 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < (𝑋 · 𝑌))
126 iocssicc 13354 . . . . . . . . . . . 12 (0(,]1) ⊆ (0[,]1)
127126, 108sselid 3942 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0[,]1))
128126, 112sselid 3942 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0[,]1))
129 iimulcl 24300 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
130127, 128, 129syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
131 elicc01 13383 . . . . . . . . . . 11 ((𝑋 · 𝑌) ∈ (0[,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
132131simp3bi 1147 . . . . . . . . . 10 ((𝑋 · 𝑌) ∈ (0[,]1) → (𝑋 · 𝑌) ≤ 1)
133130, 132syl 17 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ≤ 1)
134 elioc2 13327 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1)))
1351, 76, 134mp2an 690 . . . . . . . . 9 ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
136122, 125, 133, 135syl3anbrc 1343 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0(,]1))
13714xrge0iifcv 32515 . . . . . . . 8 ((𝑋 · 𝑌) ∈ (0(,]1) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
138136, 137syl 17 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
139109, 113relogmuld 25980 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘(𝑋 · 𝑌)) = ((log‘𝑋) + (log‘𝑌)))
140139negeqd 11395 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘(𝑋 · 𝑌)) = -((log‘𝑋) + (log‘𝑌)))
141110recnd 11183 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℂ)
142114recnd 11183 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℂ)
143141, 142negdid 11525 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -((log‘𝑋) + (log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
144138, 140, 1433eqtrd 2780 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
145117, 119, 1443eqtr4rd 2787 . . . . 5 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
146107, 145jaoian 955 . . . 4 (((𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14771, 146sylan 580 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14865, 147jaodan 956 . 2 ((𝑋 ∈ (0[,]1) ∧ (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1))) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14911, 148sylan2 593 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cun 3908  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  -cneg 11386  +crp 12915   +𝑒 cxad 13031  (,)cioo 13264  (,]cioc 13265  [,]cicc 13267  t crest 17302  ordTopcordt 17381  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  xrge0iifmhm  32520  xrge0pluscn  32521
  Copyright terms: Public domain W3C validator