Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   GIF version

Theorem xrge0iifhom 31573
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifhom ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐹   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 10863 . . . . . 6 0 ∈ ℝ*
2 1xr 10875 . . . . . 6 1 ∈ ℝ*
3 0le1 11338 . . . . . 6 0 ≤ 1
4 snunioc 13051 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
51, 2, 3, 4mp3an 1463 . . . . 5 ({0} ∪ (0(,]1)) = (0[,]1)
65eleq2i 2825 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ 𝑌 ∈ (0[,]1))
7 elun 4053 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
86, 7bitr3i 280 . . 3 (𝑌 ∈ (0[,]1) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
9 elsni 4548 . . . 4 (𝑌 ∈ {0} → 𝑌 = 0)
109orim1i 910 . . 3 ((𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
118, 10sylbi 220 . 2 (𝑌 ∈ (0[,]1) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
12 0elunit 13040 . . . . . . . 8 0 ∈ (0[,]1)
13 iftrue 4435 . . . . . . . . 9 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
14 xrge0iifhmeo.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
15 pnfex 10869 . . . . . . . . 9 +∞ ∈ V
1613, 14, 15fvmpt 6807 . . . . . . . 8 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
1712, 16ax-mp 5 . . . . . . 7 (𝐹‘0) = +∞
1817oveq2i 7213 . . . . . 6 ((𝐹𝑋) +𝑒 (𝐹‘0)) = ((𝐹𝑋) +𝑒 +∞)
19 eqeq1 2738 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
20 fveq2 6706 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
2120negeqd 11055 . . . . . . . . . . 11 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
2219, 21ifbieq2d 4455 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
23 negex 11059 . . . . . . . . . . 11 -(log‘𝑋) ∈ V
2415, 23ifex 4479 . . . . . . . . . 10 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
2522, 14, 24fvmpt 6807 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
26 pnfxr 10870 . . . . . . . . . . 11 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ∈ ℝ*)
28 elunitrn 13038 . . . . . . . . . . . . . . 15 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
2928adantr 484 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
30 elunitge0 31535 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (0[,]1) → 0 ≤ 𝑋)
3130adantr 484 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 ≤ 𝑋)
32 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
3332neqned 2942 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
3429, 31, 33ne0gt0d 10952 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 < 𝑋)
3529, 34elrpd 12608 . . . . . . . . . . . . 13 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ+)
3635relogcld 25483 . . . . . . . . . . . 12 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → (log‘𝑋) ∈ ℝ)
3736renegcld 11242 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ)
3837rexrd 10866 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ*)
3927, 38ifclda 4464 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ ℝ*)
4025, 39eqeltrd 2834 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ∈ ℝ*)
4140adantr 484 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ∈ ℝ*)
42 neeq1 2997 . . . . . . . . . 10 (+∞ = if(𝑋 = 0, +∞, -(log‘𝑋)) → (+∞ ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
43 neeq1 2997 . . . . . . . . . 10 (-(log‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)) → (-(log‘𝑋) ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
44 pnfnemnf 10871 . . . . . . . . . . 11 +∞ ≠ -∞
4544a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ≠ -∞)
4637renemnfd 10868 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ≠ -∞)
4742, 43, 45, 46ifbothda 4467 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞)
4825, 47eqnetrd 3002 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ≠ -∞)
4948adantr 484 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ≠ -∞)
50 xaddpnf1 12799 . . . . . . 7 (((𝐹𝑋) ∈ ℝ* ∧ (𝐹𝑋) ≠ -∞) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5141, 49, 50syl2anc 587 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5218, 51syl5eq 2786 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = +∞)
53 unitsscn 13071 . . . . . . . . 9 (0[,]1) ⊆ ℂ
54 simpl 486 . . . . . . . . 9 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ (0[,]1))
5553, 54sseldi 3889 . . . . . . . 8 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
5655mul01d 11014 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
5756fveq2d 6710 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = (𝐹‘0))
5857, 17eqtrdi 2790 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = +∞)
5952, 58eqtr4d 2777 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = (𝐹‘(𝑋 · 0)))
60 simpr 488 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑌 = 0)
6160fveq2d 6710 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑌) = (𝐹‘0))
6261oveq2d 7218 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹𝑋) +𝑒 (𝐹‘0)))
6360oveq2d 7218 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
6463fveq2d 6710 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 0)))
6559, 62, 643eqtr4rd 2785 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
665eleq2i 2825 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ 𝑋 ∈ (0[,]1))
67 elun 4053 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
6866, 67bitr3i 280 . . . . 5 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
69 elsni 4548 . . . . . 6 (𝑋 ∈ {0} → 𝑋 = 0)
7069orim1i 910 . . . . 5 ((𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7168, 70sylbi 220 . . . 4 (𝑋 ∈ (0[,]1) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7217oveq1i 7212 . . . . . . . 8 ((𝐹‘0) +𝑒 (𝐹𝑌)) = (+∞ +𝑒 (𝐹𝑌))
73 simpr 488 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
7414xrge0iifcv 31570 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → (𝐹𝑌) = -(log‘𝑌))
75 0le0 11914 . . . . . . . . . . . . . . . . 17 0 ≤ 0
76 1re 10816 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
77 ltpnf 12695 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → 1 < +∞)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . . 17 1 < +∞
79 iocssioo 13010 . . . . . . . . . . . . . . . . 17 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
801, 26, 75, 78, 79mp4an 693 . . . . . . . . . . . . . . . 16 (0(,]1) ⊆ (0(,)+∞)
81 ioorp 12996 . . . . . . . . . . . . . . . 16 (0(,)+∞) = ℝ+
8280, 81sseqtri 3927 . . . . . . . . . . . . . . 15 (0(,]1) ⊆ ℝ+
8382sseli 3887 . . . . . . . . . . . . . 14 (𝑌 ∈ (0(,]1) → 𝑌 ∈ ℝ+)
8483relogcld 25483 . . . . . . . . . . . . 13 (𝑌 ∈ (0(,]1) → (log‘𝑌) ∈ ℝ)
8584renegcld 11242 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → -(log‘𝑌) ∈ ℝ)
8674, 85eqeltrd 2834 . . . . . . . . . . 11 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ)
8786rexrd 10866 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ*)
8873, 87syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ∈ ℝ*)
8986renemnfd 10868 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ≠ -∞)
9073, 89syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ≠ -∞)
91 xaddpnf2 12800 . . . . . . . . 9 (((𝐹𝑌) ∈ ℝ* ∧ (𝐹𝑌) ≠ -∞) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9288, 90, 91syl2anc 587 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9372, 92syl5eq 2786 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = +∞)
94 rpssre 12576 . . . . . . . . . . . . 13 + ⊆ ℝ
9582, 94sstri 3900 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ
96 ax-resscn 10769 . . . . . . . . . . . 12 ℝ ⊆ ℂ
9795, 96sstri 3900 . . . . . . . . . . 11 (0(,]1) ⊆ ℂ
9897, 73sseldi 3889 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℂ)
9998mul02d 11013 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (0 · 𝑌) = 0)
10099fveq2d 6710 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = (𝐹‘0))
101100, 17eqtrdi 2790 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = +∞)
10293, 101eqtr4d 2777 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = (𝐹‘(0 · 𝑌)))
103 simpl 486 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑋 = 0)
104103fveq2d 6710 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑋) = (𝐹‘0))
105104oveq1d 7217 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹‘0) +𝑒 (𝐹𝑌)))
106103fvoveq1d 7224 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(0 · 𝑌)))
107102, 105, 1063eqtr4rd 2785 . . . . 5 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
108 simpl 486 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0(,]1))
10982, 108sseldi 3889 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ+)
110109relogcld 25483 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℝ)
111110renegcld 11242 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑋) ∈ ℝ)
112 simpr 488 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
11382, 112sseldi 3889 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ+)
114113relogcld 25483 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℝ)
115114renegcld 11242 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑌) ∈ ℝ)
116 rexadd 12805 . . . . . . 7 ((-(log‘𝑋) ∈ ℝ ∧ -(log‘𝑌) ∈ ℝ) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
117111, 115, 116syl2anc 587 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
11814xrge0iifcv 31570 . . . . . . 7 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
119118, 74oveqan12d 7221 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = (-(log‘𝑋) +𝑒 -(log‘𝑌)))
120109rpred 12611 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ)
121113rpred 12611 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ)
122120, 121remulcld 10846 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ ℝ)
123109rpgt0d 12614 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑋)
124113rpgt0d 12614 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑌)
125120, 121, 123, 124mulgt0d 10970 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < (𝑋 · 𝑌))
126 iocssicc 13008 . . . . . . . . . . . 12 (0(,]1) ⊆ (0[,]1)
127126, 108sseldi 3889 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0[,]1))
128126, 112sseldi 3889 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0[,]1))
129 iimulcl 23806 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
130127, 128, 129syl2anc 587 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
131 elicc01 13037 . . . . . . . . . . 11 ((𝑋 · 𝑌) ∈ (0[,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
132131simp3bi 1149 . . . . . . . . . 10 ((𝑋 · 𝑌) ∈ (0[,]1) → (𝑋 · 𝑌) ≤ 1)
133130, 132syl 17 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ≤ 1)
134 elioc2 12981 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1)))
1351, 76, 134mp2an 692 . . . . . . . . 9 ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
136122, 125, 133, 135syl3anbrc 1345 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0(,]1))
13714xrge0iifcv 31570 . . . . . . . 8 ((𝑋 · 𝑌) ∈ (0(,]1) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
138136, 137syl 17 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
139109, 113relogmuld 25485 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘(𝑋 · 𝑌)) = ((log‘𝑋) + (log‘𝑌)))
140139negeqd 11055 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘(𝑋 · 𝑌)) = -((log‘𝑋) + (log‘𝑌)))
141110recnd 10844 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℂ)
142114recnd 10844 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℂ)
143141, 142negdid 11185 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -((log‘𝑋) + (log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
144138, 140, 1433eqtrd 2778 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
145117, 119, 1443eqtr4rd 2785 . . . . 5 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
146107, 145jaoian 957 . . . 4 (((𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14771, 146sylan 583 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14865, 147jaodan 958 . 2 ((𝑋 ∈ (0[,]1) ∧ (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1))) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14911, 148sylan2 596 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2935  cun 3855  wss 3857  ifcif 4429  {csn 4531   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  +∞cpnf 10847  -∞cmnf 10848  *cxr 10849   < clt 10850  cle 10851  -cneg 11046  +crp 12569   +𝑒 cxad 12685  (,)cioo 12918  (,]cioc 12919  [,]cicc 12921  t crest 16897  ordTopcordt 16976  logclog 25415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-ef 15610  df-sin 15612  df-cos 15613  df-pi 15615  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736  df-log 25417
This theorem is referenced by:  xrge0iifmhm  31575  xrge0pluscn  31576
  Copyright terms: Public domain W3C validator