Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   GIF version

Theorem xrge0iifhom 33920
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifhom ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐹   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 11162 . . . . . 6 0 ∈ ℝ*
2 1xr 11174 . . . . . 6 1 ∈ ℝ*
3 0le1 11643 . . . . . 6 0 ≤ 1
4 snunioc 13383 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
51, 2, 3, 4mp3an 1463 . . . . 5 ({0} ∪ (0(,]1)) = (0[,]1)
65eleq2i 2820 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ 𝑌 ∈ (0[,]1))
7 elun 4104 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
86, 7bitr3i 277 . . 3 (𝑌 ∈ (0[,]1) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
9 elsni 4594 . . . 4 (𝑌 ∈ {0} → 𝑌 = 0)
109orim1i 909 . . 3 ((𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
118, 10sylbi 217 . 2 (𝑌 ∈ (0[,]1) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
12 0elunit 13372 . . . . . . . 8 0 ∈ (0[,]1)
13 iftrue 4482 . . . . . . . . 9 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
14 xrge0iifhmeo.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
15 pnfex 11168 . . . . . . . . 9 +∞ ∈ V
1613, 14, 15fvmpt 6930 . . . . . . . 8 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
1712, 16ax-mp 5 . . . . . . 7 (𝐹‘0) = +∞
1817oveq2i 7360 . . . . . 6 ((𝐹𝑋) +𝑒 (𝐹‘0)) = ((𝐹𝑋) +𝑒 +∞)
19 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
20 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
2120negeqd 11357 . . . . . . . . . . 11 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
2219, 21ifbieq2d 4503 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
23 negex 11361 . . . . . . . . . . 11 -(log‘𝑋) ∈ V
2415, 23ifex 4527 . . . . . . . . . 10 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
2522, 14, 24fvmpt 6930 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
26 pnfxr 11169 . . . . . . . . . . 11 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ∈ ℝ*)
28 elunitrn 13370 . . . . . . . . . . . . . . 15 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
30 elunitge0 33882 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (0[,]1) → 0 ≤ 𝑋)
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 ≤ 𝑋)
32 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
3332neqned 2932 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
3429, 31, 33ne0gt0d 11253 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 < 𝑋)
3529, 34elrpd 12934 . . . . . . . . . . . . 13 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ+)
3635relogcld 26530 . . . . . . . . . . . 12 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → (log‘𝑋) ∈ ℝ)
3736renegcld 11547 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ)
3837rexrd 11165 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ*)
3927, 38ifclda 4512 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ ℝ*)
4025, 39eqeltrd 2828 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ∈ ℝ*)
4140adantr 480 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ∈ ℝ*)
42 neeq1 2987 . . . . . . . . . 10 (+∞ = if(𝑋 = 0, +∞, -(log‘𝑋)) → (+∞ ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
43 neeq1 2987 . . . . . . . . . 10 (-(log‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)) → (-(log‘𝑋) ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
44 pnfnemnf 11170 . . . . . . . . . . 11 +∞ ≠ -∞
4544a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ≠ -∞)
4637renemnfd 11167 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ≠ -∞)
4742, 43, 45, 46ifbothda 4515 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞)
4825, 47eqnetrd 2992 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ≠ -∞)
4948adantr 480 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ≠ -∞)
50 xaddpnf1 13128 . . . . . . 7 (((𝐹𝑋) ∈ ℝ* ∧ (𝐹𝑋) ≠ -∞) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5141, 49, 50syl2anc 584 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5218, 51eqtrid 2776 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = +∞)
53 unitsscn 13403 . . . . . . . . 9 (0[,]1) ⊆ ℂ
54 simpl 482 . . . . . . . . 9 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ (0[,]1))
5553, 54sselid 3933 . . . . . . . 8 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
5655mul01d 11315 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
5756fveq2d 6826 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = (𝐹‘0))
5857, 17eqtrdi 2780 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = +∞)
5952, 58eqtr4d 2767 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = (𝐹‘(𝑋 · 0)))
60 simpr 484 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑌 = 0)
6160fveq2d 6826 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑌) = (𝐹‘0))
6261oveq2d 7365 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹𝑋) +𝑒 (𝐹‘0)))
6360oveq2d 7365 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
6463fveq2d 6826 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 0)))
6559, 62, 643eqtr4rd 2775 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
665eleq2i 2820 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ 𝑋 ∈ (0[,]1))
67 elun 4104 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
6866, 67bitr3i 277 . . . . 5 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
69 elsni 4594 . . . . . 6 (𝑋 ∈ {0} → 𝑋 = 0)
7069orim1i 909 . . . . 5 ((𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7168, 70sylbi 217 . . . 4 (𝑋 ∈ (0[,]1) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7217oveq1i 7359 . . . . . . . 8 ((𝐹‘0) +𝑒 (𝐹𝑌)) = (+∞ +𝑒 (𝐹𝑌))
73 simpr 484 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
7414xrge0iifcv 33917 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → (𝐹𝑌) = -(log‘𝑌))
75 0le0 12229 . . . . . . . . . . . . . . . . 17 0 ≤ 0
76 1re 11115 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
77 ltpnf 13022 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → 1 < +∞)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . . 17 1 < +∞
79 iocssioo 13342 . . . . . . . . . . . . . . . . 17 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
801, 26, 75, 78, 79mp4an 693 . . . . . . . . . . . . . . . 16 (0(,]1) ⊆ (0(,)+∞)
81 ioorp 13328 . . . . . . . . . . . . . . . 16 (0(,)+∞) = ℝ+
8280, 81sseqtri 3984 . . . . . . . . . . . . . . 15 (0(,]1) ⊆ ℝ+
8382sseli 3931 . . . . . . . . . . . . . 14 (𝑌 ∈ (0(,]1) → 𝑌 ∈ ℝ+)
8483relogcld 26530 . . . . . . . . . . . . 13 (𝑌 ∈ (0(,]1) → (log‘𝑌) ∈ ℝ)
8584renegcld 11547 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → -(log‘𝑌) ∈ ℝ)
8674, 85eqeltrd 2828 . . . . . . . . . . 11 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ)
8786rexrd 11165 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ*)
8873, 87syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ∈ ℝ*)
8986renemnfd 11167 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ≠ -∞)
9073, 89syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ≠ -∞)
91 xaddpnf2 13129 . . . . . . . . 9 (((𝐹𝑌) ∈ ℝ* ∧ (𝐹𝑌) ≠ -∞) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9288, 90, 91syl2anc 584 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9372, 92eqtrid 2776 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = +∞)
94 rpssre 12901 . . . . . . . . . . . . 13 + ⊆ ℝ
9582, 94sstri 3945 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ
96 ax-resscn 11066 . . . . . . . . . . . 12 ℝ ⊆ ℂ
9795, 96sstri 3945 . . . . . . . . . . 11 (0(,]1) ⊆ ℂ
9897, 73sselid 3933 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℂ)
9998mul02d 11314 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (0 · 𝑌) = 0)
10099fveq2d 6826 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = (𝐹‘0))
101100, 17eqtrdi 2780 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = +∞)
10293, 101eqtr4d 2767 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = (𝐹‘(0 · 𝑌)))
103 simpl 482 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑋 = 0)
104103fveq2d 6826 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑋) = (𝐹‘0))
105104oveq1d 7364 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹‘0) +𝑒 (𝐹𝑌)))
106103fvoveq1d 7371 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(0 · 𝑌)))
107102, 105, 1063eqtr4rd 2775 . . . . 5 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
108 simpl 482 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0(,]1))
10982, 108sselid 3933 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ+)
110109relogcld 26530 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℝ)
111110renegcld 11547 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑋) ∈ ℝ)
112 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
11382, 112sselid 3933 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ+)
114113relogcld 26530 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℝ)
115114renegcld 11547 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑌) ∈ ℝ)
116 rexadd 13134 . . . . . . 7 ((-(log‘𝑋) ∈ ℝ ∧ -(log‘𝑌) ∈ ℝ) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
117111, 115, 116syl2anc 584 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
11814xrge0iifcv 33917 . . . . . . 7 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
119118, 74oveqan12d 7368 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = (-(log‘𝑋) +𝑒 -(log‘𝑌)))
120109rpred 12937 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ)
121113rpred 12937 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ)
122120, 121remulcld 11145 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ ℝ)
123109rpgt0d 12940 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑋)
124113rpgt0d 12940 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑌)
125120, 121, 123, 124mulgt0d 11271 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < (𝑋 · 𝑌))
126 iocssicc 13340 . . . . . . . . . . . 12 (0(,]1) ⊆ (0[,]1)
127126, 108sselid 3933 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0[,]1))
128126, 112sselid 3933 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0[,]1))
129 iimulcl 24831 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
130127, 128, 129syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
131 elicc01 13369 . . . . . . . . . . 11 ((𝑋 · 𝑌) ∈ (0[,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
132131simp3bi 1147 . . . . . . . . . 10 ((𝑋 · 𝑌) ∈ (0[,]1) → (𝑋 · 𝑌) ≤ 1)
133130, 132syl 17 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ≤ 1)
134 elioc2 13312 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1)))
1351, 76, 134mp2an 692 . . . . . . . . 9 ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
136122, 125, 133, 135syl3anbrc 1344 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0(,]1))
13714xrge0iifcv 33917 . . . . . . . 8 ((𝑋 · 𝑌) ∈ (0(,]1) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
138136, 137syl 17 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
139109, 113relogmuld 26532 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘(𝑋 · 𝑌)) = ((log‘𝑋) + (log‘𝑌)))
140139negeqd 11357 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘(𝑋 · 𝑌)) = -((log‘𝑋) + (log‘𝑌)))
141110recnd 11143 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℂ)
142114recnd 11143 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℂ)
143141, 142negdid 11488 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -((log‘𝑋) + (log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
144138, 140, 1433eqtrd 2768 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
145117, 119, 1443eqtr4rd 2775 . . . . 5 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
146107, 145jaoian 958 . . . 4 (((𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14771, 146sylan 580 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14865, 147jaodan 959 . 2 ((𝑋 ∈ (0[,]1) ∧ (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1))) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14911, 148sylan2 593 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cun 3901  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  +crp 12893   +𝑒 cxad 13012  (,)cioo 13248  (,]cioc 13249  [,]cicc 13251  t crest 17324  ordTopcordt 17403  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463
This theorem is referenced by:  xrge0iifmhm  33922  xrge0pluscn  33923
  Copyright terms: Public domain W3C validator