Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   GIF version

Theorem xrge0iifhom 31290
 Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifhom ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐹   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 10677 . . . . . 6 0 ∈ ℝ*
2 1xr 10689 . . . . . 6 1 ∈ ℝ*
3 0le1 11152 . . . . . 6 0 ≤ 1
4 snunioc 12858 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
51, 2, 3, 4mp3an 1458 . . . . 5 ({0} ∪ (0(,]1)) = (0[,]1)
65eleq2i 2881 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ 𝑌 ∈ (0[,]1))
7 elun 4076 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
86, 7bitr3i 280 . . 3 (𝑌 ∈ (0[,]1) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
9 elsni 4542 . . . 4 (𝑌 ∈ {0} → 𝑌 = 0)
109orim1i 907 . . 3 ((𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
118, 10sylbi 220 . 2 (𝑌 ∈ (0[,]1) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
12 0elunit 12847 . . . . . . . 8 0 ∈ (0[,]1)
13 iftrue 4431 . . . . . . . . 9 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
14 xrge0iifhmeo.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
15 pnfex 10683 . . . . . . . . 9 +∞ ∈ V
1613, 14, 15fvmpt 6745 . . . . . . . 8 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
1712, 16ax-mp 5 . . . . . . 7 (𝐹‘0) = +∞
1817oveq2i 7146 . . . . . 6 ((𝐹𝑋) +𝑒 (𝐹‘0)) = ((𝐹𝑋) +𝑒 +∞)
19 eqeq1 2802 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
20 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
2120negeqd 10869 . . . . . . . . . . 11 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
2219, 21ifbieq2d 4450 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
23 negex 10873 . . . . . . . . . . 11 -(log‘𝑋) ∈ V
2415, 23ifex 4473 . . . . . . . . . 10 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
2522, 14, 24fvmpt 6745 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
26 pnfxr 10684 . . . . . . . . . . 11 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ∈ ℝ*)
28 elunitrn 12845 . . . . . . . . . . . . . . 15 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
2928adantr 484 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
30 elunitge0 31252 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (0[,]1) → 0 ≤ 𝑋)
3130adantr 484 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 ≤ 𝑋)
32 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
3332neqned 2994 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
3429, 31, 33ne0gt0d 10766 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 < 𝑋)
3529, 34elrpd 12416 . . . . . . . . . . . . 13 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ+)
3635relogcld 25214 . . . . . . . . . . . 12 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → (log‘𝑋) ∈ ℝ)
3736renegcld 11056 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ)
3837rexrd 10680 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ*)
3927, 38ifclda 4459 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ ℝ*)
4025, 39eqeltrd 2890 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ∈ ℝ*)
4140adantr 484 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ∈ ℝ*)
42 neeq1 3049 . . . . . . . . . 10 (+∞ = if(𝑋 = 0, +∞, -(log‘𝑋)) → (+∞ ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
43 neeq1 3049 . . . . . . . . . 10 (-(log‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)) → (-(log‘𝑋) ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
44 pnfnemnf 10685 . . . . . . . . . . 11 +∞ ≠ -∞
4544a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ≠ -∞)
4637renemnfd 10682 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ≠ -∞)
4742, 43, 45, 46ifbothda 4462 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞)
4825, 47eqnetrd 3054 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ≠ -∞)
4948adantr 484 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ≠ -∞)
50 xaddpnf1 12607 . . . . . . 7 (((𝐹𝑋) ∈ ℝ* ∧ (𝐹𝑋) ≠ -∞) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5141, 49, 50syl2anc 587 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5218, 51syl5eq 2845 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = +∞)
53 unitsscn 12878 . . . . . . . . 9 (0[,]1) ⊆ ℂ
54 simpl 486 . . . . . . . . 9 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ (0[,]1))
5553, 54sseldi 3913 . . . . . . . 8 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
5655mul01d 10828 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
5756fveq2d 6649 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = (𝐹‘0))
5857, 17eqtrdi 2849 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = +∞)
5952, 58eqtr4d 2836 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = (𝐹‘(𝑋 · 0)))
60 simpr 488 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑌 = 0)
6160fveq2d 6649 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑌) = (𝐹‘0))
6261oveq2d 7151 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹𝑋) +𝑒 (𝐹‘0)))
6360oveq2d 7151 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
6463fveq2d 6649 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 0)))
6559, 62, 643eqtr4rd 2844 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
665eleq2i 2881 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ 𝑋 ∈ (0[,]1))
67 elun 4076 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
6866, 67bitr3i 280 . . . . 5 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
69 elsni 4542 . . . . . 6 (𝑋 ∈ {0} → 𝑋 = 0)
7069orim1i 907 . . . . 5 ((𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7168, 70sylbi 220 . . . 4 (𝑋 ∈ (0[,]1) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7217oveq1i 7145 . . . . . . . 8 ((𝐹‘0) +𝑒 (𝐹𝑌)) = (+∞ +𝑒 (𝐹𝑌))
73 simpr 488 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
7414xrge0iifcv 31287 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → (𝐹𝑌) = -(log‘𝑌))
75 0le0 11726 . . . . . . . . . . . . . . . . 17 0 ≤ 0
76 1re 10630 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
77 ltpnf 12503 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → 1 < +∞)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . . 17 1 < +∞
79 iocssioo 12817 . . . . . . . . . . . . . . . . 17 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
801, 26, 75, 78, 79mp4an 692 . . . . . . . . . . . . . . . 16 (0(,]1) ⊆ (0(,)+∞)
81 ioorp 12803 . . . . . . . . . . . . . . . 16 (0(,)+∞) = ℝ+
8280, 81sseqtri 3951 . . . . . . . . . . . . . . 15 (0(,]1) ⊆ ℝ+
8382sseli 3911 . . . . . . . . . . . . . 14 (𝑌 ∈ (0(,]1) → 𝑌 ∈ ℝ+)
8483relogcld 25214 . . . . . . . . . . . . 13 (𝑌 ∈ (0(,]1) → (log‘𝑌) ∈ ℝ)
8584renegcld 11056 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → -(log‘𝑌) ∈ ℝ)
8674, 85eqeltrd 2890 . . . . . . . . . . 11 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ)
8786rexrd 10680 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ*)
8873, 87syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ∈ ℝ*)
8986renemnfd 10682 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ≠ -∞)
9073, 89syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ≠ -∞)
91 xaddpnf2 12608 . . . . . . . . 9 (((𝐹𝑌) ∈ ℝ* ∧ (𝐹𝑌) ≠ -∞) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9288, 90, 91syl2anc 587 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9372, 92syl5eq 2845 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = +∞)
94 rpssre 12384 . . . . . . . . . . . . 13 + ⊆ ℝ
9582, 94sstri 3924 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ
96 ax-resscn 10583 . . . . . . . . . . . 12 ℝ ⊆ ℂ
9795, 96sstri 3924 . . . . . . . . . . 11 (0(,]1) ⊆ ℂ
9897, 73sseldi 3913 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℂ)
9998mul02d 10827 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (0 · 𝑌) = 0)
10099fveq2d 6649 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = (𝐹‘0))
101100, 17eqtrdi 2849 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = +∞)
10293, 101eqtr4d 2836 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = (𝐹‘(0 · 𝑌)))
103 simpl 486 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑋 = 0)
104103fveq2d 6649 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑋) = (𝐹‘0))
105104oveq1d 7150 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹‘0) +𝑒 (𝐹𝑌)))
106103fvoveq1d 7157 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(0 · 𝑌)))
107102, 105, 1063eqtr4rd 2844 . . . . 5 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
108 simpl 486 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0(,]1))
10982, 108sseldi 3913 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ+)
110109relogcld 25214 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℝ)
111110renegcld 11056 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑋) ∈ ℝ)
112 simpr 488 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
11382, 112sseldi 3913 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ+)
114113relogcld 25214 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℝ)
115114renegcld 11056 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑌) ∈ ℝ)
116 rexadd 12613 . . . . . . 7 ((-(log‘𝑋) ∈ ℝ ∧ -(log‘𝑌) ∈ ℝ) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
117111, 115, 116syl2anc 587 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
11814xrge0iifcv 31287 . . . . . . 7 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
119118, 74oveqan12d 7154 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = (-(log‘𝑋) +𝑒 -(log‘𝑌)))
120109rpred 12419 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ)
121113rpred 12419 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ)
122120, 121remulcld 10660 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ ℝ)
123109rpgt0d 12422 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑋)
124113rpgt0d 12422 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑌)
125120, 121, 123, 124mulgt0d 10784 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < (𝑋 · 𝑌))
126 iocssicc 12815 . . . . . . . . . . . 12 (0(,]1) ⊆ (0[,]1)
127126, 108sseldi 3913 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0[,]1))
128126, 112sseldi 3913 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0[,]1))
129 iimulcl 23542 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
130127, 128, 129syl2anc 587 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
131 elicc01 12844 . . . . . . . . . . 11 ((𝑋 · 𝑌) ∈ (0[,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
132131simp3bi 1144 . . . . . . . . . 10 ((𝑋 · 𝑌) ∈ (0[,]1) → (𝑋 · 𝑌) ≤ 1)
133130, 132syl 17 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ≤ 1)
134 elioc2 12788 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1)))
1351, 76, 134mp2an 691 . . . . . . . . 9 ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
136122, 125, 133, 135syl3anbrc 1340 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0(,]1))
13714xrge0iifcv 31287 . . . . . . . 8 ((𝑋 · 𝑌) ∈ (0(,]1) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
138136, 137syl 17 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
139109, 113relogmuld 25216 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘(𝑋 · 𝑌)) = ((log‘𝑋) + (log‘𝑌)))
140139negeqd 10869 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘(𝑋 · 𝑌)) = -((log‘𝑋) + (log‘𝑌)))
141110recnd 10658 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℂ)
142114recnd 10658 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℂ)
143141, 142negdid 10999 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -((log‘𝑋) + (log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
144138, 140, 1433eqtrd 2837 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
145117, 119, 1443eqtr4rd 2844 . . . . 5 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
146107, 145jaoian 954 . . . 4 (((𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14771, 146sylan 583 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14865, 147jaodan 955 . 2 ((𝑋 ∈ (0[,]1) ∧ (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1))) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14911, 148sylan2 595 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ∪ cun 3879   ⊆ wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  ℝ*cxr 10663   < clt 10664   ≤ cle 10665  -cneg 10860  ℝ+crp 12377   +𝑒 cxad 12493  (,)cioo 12726  (,]cioc 12727  [,]cicc 12729   ↾t crest 16686  ordTopcordt 16764  logclog 25146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148 This theorem is referenced by:  xrge0iifmhm  31292  xrge0pluscn  31293
 Copyright terms: Public domain W3C validator