Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifhom Structured version   Visualization version   GIF version

Theorem xrge0iifhom 33936
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 5-Apr-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifhom ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Distinct variable groups:   𝑥,𝑋   𝑥,𝐹   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifhom
StepHypRef Expression
1 0xr 11308 . . . . . 6 0 ∈ ℝ*
2 1xr 11320 . . . . . 6 1 ∈ ℝ*
3 0le1 11786 . . . . . 6 0 ≤ 1
4 snunioc 13520 . . . . . 6 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
51, 2, 3, 4mp3an 1463 . . . . 5 ({0} ∪ (0(,]1)) = (0[,]1)
65eleq2i 2833 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ 𝑌 ∈ (0[,]1))
7 elun 4153 . . . 4 (𝑌 ∈ ({0} ∪ (0(,]1)) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
86, 7bitr3i 277 . . 3 (𝑌 ∈ (0[,]1) ↔ (𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)))
9 elsni 4643 . . . 4 (𝑌 ∈ {0} → 𝑌 = 0)
109orim1i 910 . . 3 ((𝑌 ∈ {0} ∨ 𝑌 ∈ (0(,]1)) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
118, 10sylbi 217 . 2 (𝑌 ∈ (0[,]1) → (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1)))
12 0elunit 13509 . . . . . . . 8 0 ∈ (0[,]1)
13 iftrue 4531 . . . . . . . . 9 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
14 xrge0iifhmeo.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
15 pnfex 11314 . . . . . . . . 9 +∞ ∈ V
1613, 14, 15fvmpt 7016 . . . . . . . 8 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
1712, 16ax-mp 5 . . . . . . 7 (𝐹‘0) = +∞
1817oveq2i 7442 . . . . . 6 ((𝐹𝑋) +𝑒 (𝐹‘0)) = ((𝐹𝑋) +𝑒 +∞)
19 eqeq1 2741 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0))
20 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (log‘𝑥) = (log‘𝑋))
2120negeqd 11502 . . . . . . . . . . 11 (𝑥 = 𝑋 → -(log‘𝑥) = -(log‘𝑋))
2219, 21ifbieq2d 4552 . . . . . . . . . 10 (𝑥 = 𝑋 → if(𝑥 = 0, +∞, -(log‘𝑥)) = if(𝑋 = 0, +∞, -(log‘𝑋)))
23 negex 11506 . . . . . . . . . . 11 -(log‘𝑋) ∈ V
2415, 23ifex 4576 . . . . . . . . . 10 if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ V
2522, 14, 24fvmpt 7016 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → (𝐹𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)))
26 pnfxr 11315 . . . . . . . . . . 11 +∞ ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ∈ ℝ*)
28 elunitrn 13507 . . . . . . . . . . . . . . 15 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
30 elunitge0 33898 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (0[,]1) → 0 ≤ 𝑋)
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 ≤ 𝑋)
32 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
3332neqned 2947 . . . . . . . . . . . . . . 15 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
3429, 31, 33ne0gt0d 11398 . . . . . . . . . . . . . 14 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 0 < 𝑋)
3529, 34elrpd 13074 . . . . . . . . . . . . 13 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ+)
3635relogcld 26665 . . . . . . . . . . . 12 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → (log‘𝑋) ∈ ℝ)
3736renegcld 11690 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ)
3837rexrd 11311 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ∈ ℝ*)
3927, 38ifclda 4561 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ∈ ℝ*)
4025, 39eqeltrd 2841 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ∈ ℝ*)
4140adantr 480 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ∈ ℝ*)
42 neeq1 3003 . . . . . . . . . 10 (+∞ = if(𝑋 = 0, +∞, -(log‘𝑋)) → (+∞ ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
43 neeq1 3003 . . . . . . . . . 10 (-(log‘𝑋) = if(𝑋 = 0, +∞, -(log‘𝑋)) → (-(log‘𝑋) ≠ -∞ ↔ if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞))
44 pnfnemnf 11316 . . . . . . . . . . 11 +∞ ≠ -∞
4544a1i 11 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ 𝑋 = 0) → +∞ ≠ -∞)
4637renemnfd 11313 . . . . . . . . . 10 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 = 0) → -(log‘𝑋) ≠ -∞)
4742, 43, 45, 46ifbothda 4564 . . . . . . . . 9 (𝑋 ∈ (0[,]1) → if(𝑋 = 0, +∞, -(log‘𝑋)) ≠ -∞)
4825, 47eqnetrd 3008 . . . . . . . 8 (𝑋 ∈ (0[,]1) → (𝐹𝑋) ≠ -∞)
4948adantr 480 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑋) ≠ -∞)
50 xaddpnf1 13268 . . . . . . 7 (((𝐹𝑋) ∈ ℝ* ∧ (𝐹𝑋) ≠ -∞) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5141, 49, 50syl2anc 584 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 +∞) = +∞)
5218, 51eqtrid 2789 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = +∞)
53 unitsscn 13540 . . . . . . . . 9 (0[,]1) ⊆ ℂ
54 simpl 482 . . . . . . . . 9 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ (0[,]1))
5553, 54sselid 3981 . . . . . . . 8 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑋 ∈ ℂ)
5655mul01d 11460 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 0) = 0)
5756fveq2d 6910 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = (𝐹‘0))
5857, 17eqtrdi 2793 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 0)) = +∞)
5952, 58eqtr4d 2780 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹‘0)) = (𝐹‘(𝑋 · 0)))
60 simpr 484 . . . . . 6 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → 𝑌 = 0)
6160fveq2d 6910 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹𝑌) = (𝐹‘0))
6261oveq2d 7447 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹𝑋) +𝑒 (𝐹‘0)))
6360oveq2d 7447 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝑋 · 𝑌) = (𝑋 · 0))
6463fveq2d 6910 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(𝑋 · 0)))
6559, 62, 643eqtr4rd 2788 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 = 0) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
665eleq2i 2833 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ 𝑋 ∈ (0[,]1))
67 elun 4153 . . . . . 6 (𝑋 ∈ ({0} ∪ (0(,]1)) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
6866, 67bitr3i 277 . . . . 5 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)))
69 elsni 4643 . . . . . 6 (𝑋 ∈ {0} → 𝑋 = 0)
7069orim1i 910 . . . . 5 ((𝑋 ∈ {0} ∨ 𝑋 ∈ (0(,]1)) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7168, 70sylbi 217 . . . 4 (𝑋 ∈ (0[,]1) → (𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)))
7217oveq1i 7441 . . . . . . . 8 ((𝐹‘0) +𝑒 (𝐹𝑌)) = (+∞ +𝑒 (𝐹𝑌))
73 simpr 484 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
7414xrge0iifcv 33933 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → (𝐹𝑌) = -(log‘𝑌))
75 0le0 12367 . . . . . . . . . . . . . . . . 17 0 ≤ 0
76 1re 11261 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
77 ltpnf 13162 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → 1 < +∞)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . . 17 1 < +∞
79 iocssioo 13479 . . . . . . . . . . . . . . . . 17 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
801, 26, 75, 78, 79mp4an 693 . . . . . . . . . . . . . . . 16 (0(,]1) ⊆ (0(,)+∞)
81 ioorp 13465 . . . . . . . . . . . . . . . 16 (0(,)+∞) = ℝ+
8280, 81sseqtri 4032 . . . . . . . . . . . . . . 15 (0(,]1) ⊆ ℝ+
8382sseli 3979 . . . . . . . . . . . . . 14 (𝑌 ∈ (0(,]1) → 𝑌 ∈ ℝ+)
8483relogcld 26665 . . . . . . . . . . . . 13 (𝑌 ∈ (0(,]1) → (log‘𝑌) ∈ ℝ)
8584renegcld 11690 . . . . . . . . . . . 12 (𝑌 ∈ (0(,]1) → -(log‘𝑌) ∈ ℝ)
8674, 85eqeltrd 2841 . . . . . . . . . . 11 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ)
8786rexrd 11311 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ∈ ℝ*)
8873, 87syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ∈ ℝ*)
8986renemnfd 11313 . . . . . . . . . 10 (𝑌 ∈ (0(,]1) → (𝐹𝑌) ≠ -∞)
9073, 89syl 17 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑌) ≠ -∞)
91 xaddpnf2 13269 . . . . . . . . 9 (((𝐹𝑌) ∈ ℝ* ∧ (𝐹𝑌) ≠ -∞) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9288, 90, 91syl2anc 584 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (+∞ +𝑒 (𝐹𝑌)) = +∞)
9372, 92eqtrid 2789 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = +∞)
94 rpssre 13042 . . . . . . . . . . . . 13 + ⊆ ℝ
9582, 94sstri 3993 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ
96 ax-resscn 11212 . . . . . . . . . . . 12 ℝ ⊆ ℂ
9795, 96sstri 3993 . . . . . . . . . . 11 (0(,]1) ⊆ ℂ
9897, 73sselid 3981 . . . . . . . . . 10 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℂ)
9998mul02d 11459 . . . . . . . . 9 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (0 · 𝑌) = 0)
10099fveq2d 6910 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = (𝐹‘0))
101100, 17eqtrdi 2793 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(0 · 𝑌)) = +∞)
10293, 101eqtr4d 2780 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹‘0) +𝑒 (𝐹𝑌)) = (𝐹‘(0 · 𝑌)))
103 simpl 482 . . . . . . . 8 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → 𝑋 = 0)
104103fveq2d 6910 . . . . . . 7 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹𝑋) = (𝐹‘0))
105104oveq1d 7446 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = ((𝐹‘0) +𝑒 (𝐹𝑌)))
106103fvoveq1d 7453 . . . . . 6 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (𝐹‘(0 · 𝑌)))
107102, 105, 1063eqtr4rd 2788 . . . . 5 ((𝑋 = 0 ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
108 simpl 482 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0(,]1))
10982, 108sselid 3981 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ+)
110109relogcld 26665 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℝ)
111110renegcld 11690 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑋) ∈ ℝ)
112 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0(,]1))
11382, 112sselid 3981 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ+)
114113relogcld 26665 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℝ)
115114renegcld 11690 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘𝑌) ∈ ℝ)
116 rexadd 13274 . . . . . . 7 ((-(log‘𝑋) ∈ ℝ ∧ -(log‘𝑌) ∈ ℝ) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
117111, 115, 116syl2anc 584 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (-(log‘𝑋) +𝑒 -(log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
11814xrge0iifcv 33933 . . . . . . 7 (𝑋 ∈ (0(,]1) → (𝐹𝑋) = -(log‘𝑋))
119118, 74oveqan12d 7450 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → ((𝐹𝑋) +𝑒 (𝐹𝑌)) = (-(log‘𝑋) +𝑒 -(log‘𝑌)))
120109rpred 13077 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ ℝ)
121113rpred 13077 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ ℝ)
122120, 121remulcld 11291 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ ℝ)
123109rpgt0d 13080 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑋)
124113rpgt0d 13080 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < 𝑌)
125120, 121, 123, 124mulgt0d 11416 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 0 < (𝑋 · 𝑌))
126 iocssicc 13477 . . . . . . . . . . . 12 (0(,]1) ⊆ (0[,]1)
127126, 108sselid 3981 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑋 ∈ (0[,]1))
128126, 112sselid 3981 . . . . . . . . . . 11 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → 𝑌 ∈ (0[,]1))
129 iimulcl 24966 . . . . . . . . . . 11 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
130127, 128, 129syl2anc 584 . . . . . . . . . 10 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0[,]1))
131 elicc01 13506 . . . . . . . . . . 11 ((𝑋 · 𝑌) ∈ (0[,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
132131simp3bi 1148 . . . . . . . . . 10 ((𝑋 · 𝑌) ∈ (0[,]1) → (𝑋 · 𝑌) ≤ 1)
133130, 132syl 17 . . . . . . . . 9 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ≤ 1)
134 elioc2 13450 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1)))
1351, 76, 134mp2an 692 . . . . . . . . 9 ((𝑋 · 𝑌) ∈ (0(,]1) ↔ ((𝑋 · 𝑌) ∈ ℝ ∧ 0 < (𝑋 · 𝑌) ∧ (𝑋 · 𝑌) ≤ 1))
136122, 125, 133, 135syl3anbrc 1344 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝑋 · 𝑌) ∈ (0(,]1))
13714xrge0iifcv 33933 . . . . . . . 8 ((𝑋 · 𝑌) ∈ (0(,]1) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
138136, 137syl 17 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = -(log‘(𝑋 · 𝑌)))
139109, 113relogmuld 26667 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘(𝑋 · 𝑌)) = ((log‘𝑋) + (log‘𝑌)))
140139negeqd 11502 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -(log‘(𝑋 · 𝑌)) = -((log‘𝑋) + (log‘𝑌)))
141110recnd 11289 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑋) ∈ ℂ)
142114recnd 11289 . . . . . . . 8 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (log‘𝑌) ∈ ℂ)
143141, 142negdid 11633 . . . . . . 7 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → -((log‘𝑋) + (log‘𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
144138, 140, 1433eqtrd 2781 . . . . . 6 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = (-(log‘𝑋) + -(log‘𝑌)))
145117, 119, 1443eqtr4rd 2788 . . . . 5 ((𝑋 ∈ (0(,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
146107, 145jaoian 959 . . . 4 (((𝑋 = 0 ∨ 𝑋 ∈ (0(,]1)) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14771, 146sylan 580 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0(,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14865, 147jaodan 960 . 2 ((𝑋 ∈ (0[,]1) ∧ (𝑌 = 0 ∨ 𝑌 ∈ (0(,]1))) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
14911, 148sylan2 593 1 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) +𝑒 (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cun 3949  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  -cneg 11493  +crp 13034   +𝑒 cxad 13152  (,)cioo 13387  (,]cioc 13388  [,]cicc 13390  t crest 17465  ordTopcordt 17544  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598
This theorem is referenced by:  xrge0iifmhm  33938  xrge0pluscn  33939
  Copyright terms: Public domain W3C validator