| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-1o 8507 | . . 3
⊢
1o = suc ∅ | 
| 2 | 1 | fveq2i 6908 | . 2
⊢
(Fmla‘1o) = (Fmla‘suc ∅) | 
| 3 |  | peano1 7911 | . . 3
⊢ ∅
∈ ω | 
| 4 |  | fmlasuc 35392 | . . 3
⊢ (∅
∈ ω → (Fmla‘suc ∅) = ((Fmla‘∅) ∪
{𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)})) | 
| 5 | 3, 4 | ax-mp 5 | . 2
⊢
(Fmla‘suc ∅) = ((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}) | 
| 6 |  | fmla0xp 35389 | . . 3
⊢
(Fmla‘∅) = ({∅} × (ω ×
ω)) | 
| 7 |  | fmla0 35388 | . . . . . 6
⊢
(Fmla‘∅) = {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} | 
| 8 | 7 | rexeqi 3324 | . . . . 5
⊢
(∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) | 
| 9 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑦 = 𝑝 → (𝑦 = (𝑖∈𝑔𝑗) ↔ 𝑝 = (𝑖∈𝑔𝑗))) | 
| 10 | 9 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑦 = 𝑝 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗))) | 
| 11 | 10 | elrab 3691 | . . . . . . . 8
⊢ (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} ↔ (𝑝 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗))) | 
| 12 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑝⊼𝑔𝑞) = ((𝑖∈𝑔𝑗)⊼𝑔𝑞)) | 
| 13 | 12 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑝⊼𝑔𝑞) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞))) | 
| 14 | 13 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞))) | 
| 15 |  | eqidd 2737 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑖∈𝑔𝑗) → 𝑘 = 𝑘) | 
| 16 |  | id 22 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑖∈𝑔𝑗) → 𝑝 = (𝑖∈𝑔𝑗)) | 
| 17 | 15, 16 | goaleq12d 35357 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) | 
| 18 | 17 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑥 = ∀𝑔𝑘𝑝 ↔ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 19 | 18 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 20 | 14, 19 | orbi12d 918 | . . . . . . . . . . . . 13
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 21 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑞 → (𝑧 = (𝑘∈𝑔𝑙) ↔ 𝑞 = (𝑘∈𝑔𝑙))) | 
| 22 | 21 | 2rexbidv 3221 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑞 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘∈𝑔𝑙) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙))) | 
| 23 |  | fmla0 35388 | . . . . . . . . . . . . . . . . . 18
⊢
(Fmla‘∅) = {𝑧 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘∈𝑔𝑙)} | 
| 24 | 22, 23 | elrab2 3694 | . . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ (Fmla‘∅)
↔ (𝑞 ∈ V ∧
∃𝑘 ∈ ω
∃𝑙 ∈ ω
𝑞 = (𝑘∈𝑔𝑙))) | 
| 25 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = (𝑘∈𝑔𝑙) → ((𝑖∈𝑔𝑗)⊼𝑔𝑞) = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) | 
| 26 | 25 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = (𝑘∈𝑔𝑙) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 27 | 26 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (𝑞 = (𝑘∈𝑔𝑙) → 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 28 | 27 | reximdv 3169 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙) → ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 29 | 28 | reximdv 3169 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 30 | 29 | com12 32 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω 𝑞 = (𝑘∈𝑔𝑙) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 31 | 24, 30 | simplbiim 504 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ (Fmla‘∅)
→ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 32 | 31 | rexlimiv 3147 | . . . . . . . . . . . . . . 15
⊢
(∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) | 
| 33 | 32 | orim1i 909 | . . . . . . . . . . . . . 14
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 =
∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 34 |  | r19.43 3121 | . . . . . . . . . . . . . 14
⊢
(∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 =
∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 35 | 33, 34 | sylibr 234 | . . . . . . . . . . . . 13
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 36 | 20, 35 | biimtrdi 253 | . . . . . . . . . . . 12
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 37 | 36 | com12 32 | . . . . . . . . . . 11
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (𝑝 = (𝑖∈𝑔𝑗) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 38 | 37 | reximdv 3169 | . . . . . . . . . 10
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) → ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 39 | 38 | reximdv 3169 | . . . . . . . . 9
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 40 | 39 | com12 32 | . . . . . . . 8
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω 𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 41 | 11, 40 | simplbiim 504 | . . . . . . 7
⊢ (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) | 
| 42 | 41 | rexlimiv 3147 | . . . . . 6
⊢
(∃𝑝 ∈
{𝑦 ∈ V ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 43 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑗)) | 
| 44 | 43 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) | 
| 45 | 44 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑚 → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 46 | 45 | rexbidv 3178 | . . . . . . . . . 10
⊢ (𝑖 = 𝑚 → (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 47 |  | eqidd 2737 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → 𝑘 = 𝑘) | 
| 48 | 47, 43 | goaleq12d 35357 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑚 → ∀𝑔𝑘(𝑖∈𝑔𝑗) = ∀𝑔𝑘(𝑚∈𝑔𝑗)) | 
| 49 | 48 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑖 = 𝑚 → (𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗))) | 
| 50 | 46, 49 | orbi12d 918 | . . . . . . . . 9
⊢ (𝑖 = 𝑚 → ((∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)))) | 
| 51 | 50 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑖 = 𝑚 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)))) | 
| 52 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑛 → (𝑚∈𝑔𝑗) = (𝑚∈𝑔𝑛)) | 
| 53 | 52 | oveq1d 7447 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑛 → ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙))) | 
| 54 | 53 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → (𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 55 | 54 | rexbidv 3178 | . . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)))) | 
| 56 |  | eqidd 2737 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑛 → 𝑘 = 𝑘) | 
| 57 | 56, 52 | goaleq12d 35357 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → ∀𝑔𝑘(𝑚∈𝑔𝑗) = ∀𝑔𝑘(𝑚∈𝑔𝑛)) | 
| 58 | 57 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 59 | 55, 58 | orbi12d 918 | . . . . . . . . 9
⊢ (𝑗 = 𝑛 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) | 
| 60 | 59 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑗 = 𝑛 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) | 
| 61 | 51, 60 | cbvrex2vw 3241 | . . . . . . 7
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 62 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑜 → (𝑘∈𝑔𝑙) = (𝑜∈𝑔𝑙)) | 
| 63 | 62 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) | 
| 64 | 63 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑜 → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) | 
| 65 | 64 | rexbidv 3178 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑜 → (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) | 
| 66 |  | id 22 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → 𝑘 = 𝑜) | 
| 67 |  | eqidd 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛)) | 
| 68 | 66, 67 | goaleq12d 35357 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑜 → ∀𝑔𝑘(𝑚∈𝑔𝑛) = ∀𝑔𝑜(𝑚∈𝑔𝑛)) | 
| 69 | 68 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑜 → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) | 
| 70 | 65, 69 | orbi12d 918 | . . . . . . . . . 10
⊢ (𝑘 = 𝑜 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)))) | 
| 71 | 70 | cbvrexvw 3237 | . . . . . . . . 9
⊢
(∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) ↔ ∃𝑜 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) | 
| 72 | 3 | ne0ii 4343 | . . . . . . . . . . . 12
⊢ ω
≠ ∅ | 
| 73 |  | r19.44zv 4503 | . . . . . . . . . . . 12
⊢ (ω
≠ ∅ → (∃𝑙 ∈ ω (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)))) | 
| 74 | 72, 73 | ax-mp 5 | . . . . . . . . . . 11
⊢
(∃𝑙 ∈
ω (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) | 
| 75 |  | eqeq1 2740 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑚∈𝑔𝑛) → (𝑦 = (𝑖∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗))) | 
| 76 | 75 | 2rexbidv 3221 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑚∈𝑔𝑛) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗))) | 
| 77 |  | ovexd 7467 | . . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (𝑚∈𝑔𝑛) ∈ V) | 
| 78 |  | simpl 482 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑚 ∈
ω) | 
| 79 | 43 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → ((𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) | 
| 80 | 79 | rexbidv 3178 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → (∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) | 
| 81 | 80 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑖 = 𝑚) → (∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) | 
| 82 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑛 ∈
ω) | 
| 83 | 52 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑛 → ((𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛))) | 
| 84 | 83 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑗 = 𝑛) → ((𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛))) | 
| 85 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛)) | 
| 86 | 82, 84, 85 | rspcedvd 3623 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
∃𝑗 ∈ ω
(𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗)) | 
| 87 | 78, 81, 86 | rspcedvd 3623 | . . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗)) | 
| 88 | 87 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗)) | 
| 89 | 76, 77, 88 | elrabd 3693 | . . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (𝑚∈𝑔𝑛) ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)}) | 
| 90 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑝⊼𝑔𝑞) = ((𝑚∈𝑔𝑛)⊼𝑔𝑞)) | 
| 91 | 90 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑥 = (𝑝⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞))) | 
| 92 | 91 | rexbidv 3178 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞))) | 
| 93 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑚∈𝑔𝑛) → 𝑘 = 𝑘) | 
| 94 |  | id 22 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑚∈𝑔𝑛) → 𝑝 = (𝑚∈𝑔𝑛)) | 
| 95 | 93, 94 | goaleq12d 35357 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑚∈𝑔𝑛) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) | 
| 96 | 95 | eqeq2d 2747 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑥 = ∀𝑔𝑘𝑝 ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 97 | 96 | rexbidv 3178 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 98 | 92, 97 | orbi12d 918 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑚∈𝑔𝑛) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) | 
| 99 | 98 | adantl 481 | . . . . . . . . . . . . . 14
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) ∧ 𝑝 = (𝑚∈𝑔𝑛)) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) | 
| 100 |  | ovexd 7467 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) ∈ V) | 
| 101 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) → 𝑜 ∈
ω) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑜 ∈
ω) | 
| 103 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑜 → (𝑖∈𝑔𝑗) = (𝑜∈𝑔𝑗)) | 
| 104 | 103 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑜 → ((𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) | 
| 105 | 104 | rexbidv 3178 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑜 → (∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) | 
| 106 | 105 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑖 = 𝑜) → (∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) | 
| 107 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑙 ∈
ω) | 
| 108 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑙 → (𝑜∈𝑔𝑗) = (𝑜∈𝑔𝑙)) | 
| 109 | 108 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑙 → ((𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙))) | 
| 110 | 109 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑗 = 𝑙) → ((𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙))) | 
| 111 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙)) | 
| 112 | 107, 110,
111 | rspcedvd 3623 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) →
∃𝑗 ∈ ω
(𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗)) | 
| 113 | 102, 106,
112 | rspcedvd 3623 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) →
∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗)) | 
| 114 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑜∈𝑔𝑙) → (𝑝 = (𝑖∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) | 
| 115 | 114 | 2rexbidv 3221 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑜∈𝑔𝑙) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) | 
| 116 |  | fmla0 35388 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(Fmla‘∅) = {𝑝 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗)} | 
| 117 | 115, 116 | elrab2 3694 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑜∈𝑔𝑙) ∈ (Fmla‘∅)
↔ ((𝑜∈𝑔𝑙) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) | 
| 118 | 100, 113,
117 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) ∈
(Fmla‘∅)) | 
| 119 | 118 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → (𝑜∈𝑔𝑙) ∈
(Fmla‘∅)) | 
| 120 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = (𝑜∈𝑔𝑙) → ((𝑚∈𝑔𝑛)⊼𝑔𝑞) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) | 
| 121 | 120 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 = (𝑜∈𝑔𝑙) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) | 
| 122 | 121 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) ∧ 𝑞 = (𝑜∈𝑔𝑙)) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) | 
| 123 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) | 
| 124 | 119, 122,
123 | rspcedvd 3623 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → ∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑚∈𝑔𝑛)⊼𝑔𝑞)) | 
| 125 | 124 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) → ∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑚∈𝑔𝑛)⊼𝑔𝑞))) | 
| 126 | 102 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → 𝑜 ∈ ω) | 
| 127 | 69 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) ∧ 𝑘 = 𝑜) → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) | 
| 128 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) | 
| 129 | 126, 127,
128 | rspcedvd 3623 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) | 
| 130 | 129 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 131 | 125, 130 | orim12d 966 | . . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) | 
| 132 | 131 | imp 406 | . . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) | 
| 133 | 89, 99, 132 | rspcedvd 3623 | . . . . . . . . . . . . 13
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) | 
| 134 | 133 | ex 412 | . . . . . . . . . . . 12
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) | 
| 135 | 134 | rexlimdva 3154 | . . . . . . . . . . 11
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) →
(∃𝑙 ∈ ω
(𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) | 
| 136 | 74, 135 | biimtrrid 243 | . . . . . . . . . 10
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) →
((∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) | 
| 137 | 136 | rexlimdva 3154 | . . . . . . . . 9
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
(∃𝑜 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) | 
| 138 | 71, 137 | biimtrid 242 | . . . . . . . 8
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
(∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) | 
| 139 | 138 | rexlimivv 3200 | . . . . . . 7
⊢
(∃𝑚 ∈
ω ∃𝑛 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) | 
| 140 | 61, 139 | sylbi 217 | . . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) | 
| 141 | 42, 140 | impbii 209 | . . . . 5
⊢
(∃𝑝 ∈
{𝑦 ∈ V ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 142 | 8, 141 | bitri 275 | . . . 4
⊢
(∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) | 
| 143 | 142 | abbii 2808 | . . 3
⊢ {𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))} | 
| 144 | 6, 143 | uneq12i 4165 | . 2
⊢
((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}) = (({∅} × (ω ×
ω)) ∪ {𝑥 ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) | 
| 145 | 2, 5, 144 | 3eqtri 2768 | 1
⊢
(Fmla‘1o) = (({∅} × (ω ×
ω)) ∪ {𝑥 ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) |