Step | Hyp | Ref
| Expression |
1 | | df-1o 8202 |
. . 3
⊢
1o = suc ∅ |
2 | 1 | fveq2i 6720 |
. 2
⊢
(Fmla‘1o) = (Fmla‘suc ∅) |
3 | | peano1 7667 |
. . 3
⊢ ∅
∈ ω |
4 | | fmlasuc 33061 |
. . 3
⊢ (∅
∈ ω → (Fmla‘suc ∅) = ((Fmla‘∅) ∪
{𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)})) |
5 | 3, 4 | ax-mp 5 |
. 2
⊢
(Fmla‘suc ∅) = ((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}) |
6 | | fmla0xp 33058 |
. . 3
⊢
(Fmla‘∅) = ({∅} × (ω ×
ω)) |
7 | | fmla0 33057 |
. . . . . 6
⊢
(Fmla‘∅) = {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} |
8 | 7 | rexeqi 3324 |
. . . . 5
⊢
(∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) |
9 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑝 → (𝑦 = (𝑖∈𝑔𝑗) ↔ 𝑝 = (𝑖∈𝑔𝑗))) |
10 | 9 | 2rexbidv 3219 |
. . . . . . . . 9
⊢ (𝑦 = 𝑝 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗))) |
11 | 10 | elrab 3602 |
. . . . . . . 8
⊢ (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} ↔ (𝑝 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗))) |
12 | | oveq1 7220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑝⊼𝑔𝑞) = ((𝑖∈𝑔𝑗)⊼𝑔𝑞)) |
13 | 12 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑝⊼𝑔𝑞) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞))) |
14 | 13 | rexbidv 3216 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞))) |
15 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑖∈𝑔𝑗) → 𝑘 = 𝑘) |
16 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑖∈𝑔𝑗) → 𝑝 = (𝑖∈𝑔𝑗)) |
17 | 15, 16 | goaleq12d 33026 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) |
18 | 17 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (𝑥 = ∀𝑔𝑘𝑝 ↔ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
19 | 18 | rexbidv 3216 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = (𝑖∈𝑔𝑗) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
20 | 14, 19 | orbi12d 919 |
. . . . . . . . . . . . 13
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
21 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑞 → (𝑧 = (𝑘∈𝑔𝑙) ↔ 𝑞 = (𝑘∈𝑔𝑙))) |
22 | 21 | 2rexbidv 3219 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑞 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘∈𝑔𝑙) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙))) |
23 | | fmla0 33057 |
. . . . . . . . . . . . . . . . . 18
⊢
(Fmla‘∅) = {𝑧 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘∈𝑔𝑙)} |
24 | 22, 23 | elrab2 3605 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ (Fmla‘∅)
↔ (𝑞 ∈ V ∧
∃𝑘 ∈ ω
∃𝑙 ∈ ω
𝑞 = (𝑘∈𝑔𝑙))) |
25 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = (𝑘∈𝑔𝑙) → ((𝑖∈𝑔𝑗)⊼𝑔𝑞) = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
26 | 25 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = (𝑘∈𝑔𝑙) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) ↔ 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
27 | 26 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (𝑞 = (𝑘∈𝑔𝑙) → 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
28 | 27 | reximdv 3192 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙) → ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
29 | 28 | reximdv 3192 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘∈𝑔𝑙) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
30 | 29 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω 𝑞 = (𝑘∈𝑔𝑙) → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
31 | 24, 30 | simplbiim 508 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ (Fmla‘∅)
→ (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
32 | 31 | rexlimiv 3199 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
33 | 32 | orim1i 910 |
. . . . . . . . . . . . . 14
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 =
∀𝑔𝑘(𝑖∈𝑔𝑗))) |
34 | | r19.43 3264 |
. . . . . . . . . . . . . 14
⊢
(∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 =
∀𝑔𝑘(𝑖∈𝑔𝑗))) |
35 | 33, 34 | sylibr 237 |
. . . . . . . . . . . . 13
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑖∈𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
36 | 20, 35 | syl6bi 256 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
37 | 36 | com12 32 |
. . . . . . . . . . 11
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (𝑝 = (𝑖∈𝑔𝑗) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
38 | 37 | reximdv 3192 |
. . . . . . . . . 10
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) → ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
39 | 38 | reximdv 3192 |
. . . . . . . . 9
⊢
((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
40 | 39 | com12 32 |
. . . . . . . 8
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω 𝑝 = (𝑖∈𝑔𝑗) → ((∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
41 | 11, 40 | simplbiim 508 |
. . . . . . 7
⊢ (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)))) |
42 | 41 | rexlimiv 3199 |
. . . . . 6
⊢
(∃𝑝 ∈
{𝑦 ∈ V ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
43 | | oveq1 7220 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝑖∈𝑔𝑗) = (𝑚∈𝑔𝑗)) |
44 | 43 | oveq1d 7228 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
45 | 44 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑚 → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
46 | 45 | rexbidv 3216 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑚 → (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
47 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → 𝑘 = 𝑘) |
48 | 47, 43 | goaleq12d 33026 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑚 → ∀𝑔𝑘(𝑖∈𝑔𝑗) = ∀𝑔𝑘(𝑚∈𝑔𝑗)) |
49 | 48 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑚 → (𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗))) |
50 | 46, 49 | orbi12d 919 |
. . . . . . . . 9
⊢ (𝑖 = 𝑚 → ((∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)))) |
51 | 50 | rexbidv 3216 |
. . . . . . . 8
⊢ (𝑖 = 𝑚 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)))) |
52 | | oveq2 7221 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑛 → (𝑚∈𝑔𝑗) = (𝑚∈𝑔𝑛)) |
53 | 52 | oveq1d 7228 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑛 → ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙))) |
54 | 53 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → (𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)))) |
55 | 54 | rexbidv 3216 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)))) |
56 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑛 → 𝑘 = 𝑘) |
57 | 56, 52 | goaleq12d 33026 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑛 → ∀𝑔𝑘(𝑚∈𝑔𝑗) = ∀𝑔𝑘(𝑚∈𝑔𝑛)) |
58 | 57 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑛 → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
59 | 55, 58 | orbi12d 919 |
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) |
60 | 59 | rexbidv 3216 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) |
61 | 51, 60 | cbvrex2vw 3372 |
. . . . . . 7
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
62 | | oveq1 7220 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑜 → (𝑘∈𝑔𝑙) = (𝑜∈𝑔𝑙)) |
63 | 62 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) |
64 | 63 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑜 → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) |
65 | 64 | rexbidv 3216 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑜 → (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) |
66 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → 𝑘 = 𝑜) |
67 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑜 → (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛)) |
68 | 66, 67 | goaleq12d 33026 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑜 → ∀𝑔𝑘(𝑚∈𝑔𝑛) = ∀𝑔𝑜(𝑚∈𝑔𝑛)) |
69 | 68 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑜 → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) |
70 | 65, 69 | orbi12d 919 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑜 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)))) |
71 | 70 | cbvrexvw 3359 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) ↔ ∃𝑜 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) |
72 | 3 | ne0ii 4252 |
. . . . . . . . . . . 12
⊢ ω
≠ ∅ |
73 | | r19.44zv 4415 |
. . . . . . . . . . . 12
⊢ (ω
≠ ∅ → (∃𝑙 ∈ ω (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)))) |
74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∃𝑙 ∈
ω (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) |
75 | | eqeq1 2741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑚∈𝑔𝑛) → (𝑦 = (𝑖∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗))) |
76 | 75 | 2rexbidv 3219 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑚∈𝑔𝑛) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗))) |
77 | | ovexd 7248 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (𝑚∈𝑔𝑛) ∈ V) |
78 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑚 ∈
ω) |
79 | 43 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → ((𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) |
80 | 79 | rexbidv 3216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → (∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) |
81 | 80 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑖 = 𝑚) → (∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗))) |
82 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑛 ∈
ω) |
83 | 52 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑛 → ((𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛))) |
84 | 83 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑗 = 𝑛) → ((𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗) ↔ (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛))) |
85 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑛)) |
86 | 82, 84, 85 | rspcedvd 3540 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
∃𝑗 ∈ ω
(𝑚∈𝑔𝑛) = (𝑚∈𝑔𝑗)) |
87 | 78, 81, 86 | rspcedvd 3540 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗)) |
88 | 87 | ad5ant12 756 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚∈𝑔𝑛) = (𝑖∈𝑔𝑗)) |
89 | 76, 77, 88 | elrabd 3604 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (𝑚∈𝑔𝑛) ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)}) |
90 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑝⊼𝑔𝑞) = ((𝑚∈𝑔𝑛)⊼𝑔𝑞)) |
91 | 90 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑥 = (𝑝⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞))) |
92 | 91 | rexbidv 3216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞))) |
93 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑚∈𝑔𝑛) → 𝑘 = 𝑘) |
94 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑚∈𝑔𝑛) → 𝑝 = (𝑚∈𝑔𝑛)) |
95 | 93, 94 | goaleq12d 33026 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑚∈𝑔𝑛) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) |
96 | 95 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (𝑥 = ∀𝑔𝑘𝑝 ↔ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
97 | 96 | rexbidv 3216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (𝑚∈𝑔𝑛) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
98 | 92, 97 | orbi12d 919 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (𝑚∈𝑔𝑛) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) |
99 | 98 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) ∧ 𝑝 = (𝑚∈𝑔𝑛)) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) |
100 | | ovexd 7248 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) ∈ V) |
101 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) → 𝑜 ∈
ω) |
102 | 101 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑜 ∈
ω) |
103 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑜 → (𝑖∈𝑔𝑗) = (𝑜∈𝑔𝑗)) |
104 | 103 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑜 → ((𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) |
105 | 104 | rexbidv 3216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑜 → (∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) |
106 | 105 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑖 = 𝑜) → (∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗))) |
107 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑙 ∈
ω) |
108 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑙 → (𝑜∈𝑔𝑗) = (𝑜∈𝑔𝑙)) |
109 | 108 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑙 → ((𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙))) |
110 | 109 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑗 = 𝑙) → ((𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙))) |
111 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑙)) |
112 | 107, 110,
111 | rspcedvd 3540 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) →
∃𝑗 ∈ ω
(𝑜∈𝑔𝑙) = (𝑜∈𝑔𝑗)) |
113 | 102, 106,
112 | rspcedvd 3540 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) →
∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗)) |
114 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑜∈𝑔𝑙) → (𝑝 = (𝑖∈𝑔𝑗) ↔ (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) |
115 | 114 | 2rexbidv 3219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑜∈𝑔𝑙) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) |
116 | | fmla0 33057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Fmla‘∅) = {𝑝 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖∈𝑔𝑗)} |
117 | 115, 116 | elrab2 3605 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑜∈𝑔𝑙) ∈ (Fmla‘∅)
↔ ((𝑜∈𝑔𝑙) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜∈𝑔𝑙) = (𝑖∈𝑔𝑗))) |
118 | 100, 113,
117 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜∈𝑔𝑙) ∈
(Fmla‘∅)) |
119 | 118 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → (𝑜∈𝑔𝑙) ∈
(Fmla‘∅)) |
120 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = (𝑜∈𝑔𝑙) → ((𝑚∈𝑔𝑛)⊼𝑔𝑞) = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) |
121 | 120 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 = (𝑜∈𝑔𝑙) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) |
122 | 121 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) ∧ 𝑞 = (𝑜∈𝑔𝑙)) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)))) |
123 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) |
124 | 119, 122,
123 | rspcedvd 3540 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙))) → ∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑚∈𝑔𝑛)⊼𝑔𝑞)) |
125 | 124 | ex 416 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) → ∃𝑞 ∈
(Fmla‘∅)𝑥 =
((𝑚∈𝑔𝑛)⊼𝑔𝑞))) |
126 | 102 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → 𝑜 ∈ ω) |
127 | 69 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) ∧ 𝑘 = 𝑜) → (𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) |
128 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) |
129 | 126, 127,
128 | rspcedvd 3540 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ 𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) |
130 | 129 | ex 416 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 =
∀𝑔𝑜(𝑚∈𝑔𝑛) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
131 | 125, 130 | orim12d 965 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)))) |
132 | 131 | imp 410 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛))) |
133 | 89, 99, 132 | rspcedvd 3540 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈
ω ∧ 𝑛 ∈
ω) ∧ 𝑜 ∈
ω) ∧ 𝑙 ∈
ω) ∧ (𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛))) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) |
134 | 133 | ex 416 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) |
135 | 134 | rexlimdva 3203 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) →
(∃𝑙 ∈ ω
(𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) |
136 | 74, 135 | syl5bir 246 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) →
((∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) |
137 | 136 | rexlimdva 3203 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
(∃𝑜 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑜∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) |
138 | 71, 137 | syl5bi 245 |
. . . . . . . 8
⊢ ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) →
(∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))) |
139 | 138 | rexlimivv 3211 |
. . . . . . 7
⊢
(∃𝑚 ∈
ω ∃𝑛 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑚∈𝑔𝑛)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚∈𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) |
140 | 61, 139 | sylbi 220 |
. . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω ∃𝑘 ∈
ω (∃𝑙 ∈
ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)) |
141 | 42, 140 | impbii 212 |
. . . . 5
⊢
(∃𝑝 ∈
{𝑦 ∈ V ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
𝑦 = (𝑖∈𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
142 | 8, 141 | bitri 278 |
. . . 4
⊢
(∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))) |
143 | 142 | abbii 2808 |
. . 3
⊢ {𝑥 ∣ ∃𝑝 ∈
(Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))} |
144 | 6, 143 | uneq12i 4075 |
. 2
⊢
((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈
(Fmla‘∅)𝑥 =
(𝑝⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}) = (({∅} × (ω ×
ω)) ∪ {𝑥 ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) |
145 | 2, 5, 144 | 3eqtri 2769 |
1
⊢
(Fmla‘1o) = (({∅} × (ω ×
ω)) ∪ {𝑥 ∣
∃𝑖 ∈ ω
∃𝑗 ∈ ω
∃𝑘 ∈ ω
(∃𝑙 ∈ ω
𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖∈𝑔𝑗))}) |