Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla1 Structured version   Visualization version   GIF version

Theorem fmla1 35128
Description: The valid Godel formulas of height 1 is the set of all formulas of the form (𝑎𝑔𝑏) and 𝑔𝑘𝑎 with atoms 𝑎, 𝑏 of the form 𝑥𝑦. (Contributed by AV, 20-Sep-2023.)
Assertion
Ref Expression
fmla1 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
Distinct variable group:   𝑖,𝑗,𝑥,𝑘,𝑙

Proof of Theorem fmla1
Dummy variables 𝑦 𝑛 𝑧 𝑚 𝑜 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1o 8487 . . 3 1o = suc ∅
21fveq2i 6899 . 2 (Fmla‘1o) = (Fmla‘suc ∅)
3 peano1 7895 . . 3 ∅ ∈ ω
4 fmlasuc 35127 . . 3 (∅ ∈ ω → (Fmla‘suc ∅) = ((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}))
53, 4ax-mp 5 . 2 (Fmla‘suc ∅) = ((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)})
6 fmla0xp 35124 . . 3 (Fmla‘∅) = ({∅} × (ω × ω))
7 fmla0 35123 . . . . . 6 (Fmla‘∅) = {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)}
87rexeqi 3313 . . . . 5 (∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))
9 eqeq1 2729 . . . . . . . . . 10 (𝑦 = 𝑝 → (𝑦 = (𝑖𝑔𝑗) ↔ 𝑝 = (𝑖𝑔𝑗)))
1092rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑝 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗)))
1110elrab 3679 . . . . . . . 8 (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} ↔ (𝑝 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗)))
12 oveq1 7426 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑖𝑔𝑗) → (𝑝𝑔𝑞) = ((𝑖𝑔𝑗)⊼𝑔𝑞))
1312eqeq2d 2736 . . . . . . . . . . . . . . 15 (𝑝 = (𝑖𝑔𝑗) → (𝑥 = (𝑝𝑔𝑞) ↔ 𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞)))
1413rexbidv 3168 . . . . . . . . . . . . . 14 (𝑝 = (𝑖𝑔𝑗) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞)))
15 eqidd 2726 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑖𝑔𝑗) → 𝑘 = 𝑘)
16 id 22 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑖𝑔𝑗) → 𝑝 = (𝑖𝑔𝑗))
1715, 16goaleq12d 35092 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑖𝑔𝑗) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑖𝑔𝑗))
1817eqeq2d 2736 . . . . . . . . . . . . . . 15 (𝑝 = (𝑖𝑔𝑗) → (𝑥 = ∀𝑔𝑘𝑝𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
1918rexbidv 3168 . . . . . . . . . . . . . 14 (𝑝 = (𝑖𝑔𝑗) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
2014, 19orbi12d 916 . . . . . . . . . . . . 13 (𝑝 = (𝑖𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
21 eqeq1 2729 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑞 → (𝑧 = (𝑘𝑔𝑙) ↔ 𝑞 = (𝑘𝑔𝑙)))
22212rexbidv 3209 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑞 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘𝑔𝑙) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘𝑔𝑙)))
23 fmla0 35123 . . . . . . . . . . . . . . . . . 18 (Fmla‘∅) = {𝑧 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑧 = (𝑘𝑔𝑙)}
2422, 23elrab2 3682 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ (Fmla‘∅) ↔ (𝑞 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘𝑔𝑙)))
25 oveq2 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = (𝑘𝑔𝑙) → ((𝑖𝑔𝑗)⊼𝑔𝑞) = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)))
2625eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = (𝑘𝑔𝑙) → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) ↔ 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
2726biimpcd 248 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → (𝑞 = (𝑘𝑔𝑙) → 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
2827reximdv 3159 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → (∃𝑙 ∈ ω 𝑞 = (𝑘𝑔𝑙) → ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
2928reximdv 3159 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘𝑔𝑙) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
3029com12 32 . . . . . . . . . . . . . . . . 17 (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑞 = (𝑘𝑔𝑙) → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
3124, 30simplbiim 503 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (Fmla‘∅) → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
3231rexlimiv 3137 . . . . . . . . . . . . . . 15 (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)))
3332orim1i 907 . . . . . . . . . . . . . 14 ((∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
34 r19.43 3111 . . . . . . . . . . . . . 14 (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
3533, 34sylibr 233 . . . . . . . . . . . . 13 ((∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑖𝑔𝑗)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
3620, 35biimtrdi 252 . . . . . . . . . . . 12 (𝑝 = (𝑖𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
3736com12 32 . . . . . . . . . . 11 ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (𝑝 = (𝑖𝑔𝑗) → ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
3837reximdv 3159 . . . . . . . . . 10 ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
3938reximdv 3159 . . . . . . . . 9 ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4039com12 32 . . . . . . . 8 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4111, 40simplbiim 503 . . . . . . 7 (𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))))
4241rexlimiv 3137 . . . . . 6 (∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
43 oveq1 7426 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝑖𝑔𝑗) = (𝑚𝑔𝑗))
4443oveq1d 7434 . . . . . . . . . . . 12 (𝑖 = 𝑚 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)))
4544eqeq2d 2736 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
4645rexbidv 3168 . . . . . . . . . 10 (𝑖 = 𝑚 → (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
47 eqidd 2726 . . . . . . . . . . . 12 (𝑖 = 𝑚𝑘 = 𝑘)
4847, 43goaleq12d 35092 . . . . . . . . . . 11 (𝑖 = 𝑚 → ∀𝑔𝑘(𝑖𝑔𝑗) = ∀𝑔𝑘(𝑚𝑔𝑗))
4948eqeq2d 2736 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗)))
5046, 49orbi12d 916 . . . . . . . . 9 (𝑖 = 𝑚 → ((∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗))))
5150rexbidv 3168 . . . . . . . 8 (𝑖 = 𝑚 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗))))
52 oveq2 7427 . . . . . . . . . . . . 13 (𝑗 = 𝑛 → (𝑚𝑔𝑗) = (𝑚𝑔𝑛))
5352oveq1d 7434 . . . . . . . . . . . 12 (𝑗 = 𝑛 → ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)))
5453eqeq2d 2736 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙))))
5554rexbidv 3168 . . . . . . . . . 10 (𝑗 = 𝑛 → (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙))))
56 eqidd 2726 . . . . . . . . . . . 12 (𝑗 = 𝑛𝑘 = 𝑘)
5756, 52goaleq12d 35092 . . . . . . . . . . 11 (𝑗 = 𝑛 → ∀𝑔𝑘(𝑚𝑔𝑗) = ∀𝑔𝑘(𝑚𝑔𝑛))
5857eqeq2d 2736 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗) ↔ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
5955, 58orbi12d 916 . . . . . . . . 9 (𝑗 = 𝑛 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))))
6059rexbidv 3168 . . . . . . . 8 (𝑗 = 𝑛 → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑗)) ↔ ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))))
6151, 60cbvrex2vw 3229 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) ↔ ∃𝑚 ∈ ω ∃𝑛 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
62 oveq1 7426 . . . . . . . . . . . . . 14 (𝑘 = 𝑜 → (𝑘𝑔𝑙) = (𝑜𝑔𝑙))
6362oveq2d 7435 . . . . . . . . . . . . 13 (𝑘 = 𝑜 → ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)))
6463eqeq2d 2736 . . . . . . . . . . . 12 (𝑘 = 𝑜 → (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))))
6564rexbidv 3168 . . . . . . . . . . 11 (𝑘 = 𝑜 → (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ↔ ∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))))
66 id 22 . . . . . . . . . . . . 13 (𝑘 = 𝑜𝑘 = 𝑜)
67 eqidd 2726 . . . . . . . . . . . . 13 (𝑘 = 𝑜 → (𝑚𝑔𝑛) = (𝑚𝑔𝑛))
6866, 67goaleq12d 35092 . . . . . . . . . . . 12 (𝑘 = 𝑜 → ∀𝑔𝑘(𝑚𝑔𝑛) = ∀𝑔𝑜(𝑚𝑔𝑛))
6968eqeq2d 2736 . . . . . . . . . . 11 (𝑘 = 𝑜 → (𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)))
7065, 69orbi12d 916 . . . . . . . . . 10 (𝑘 = 𝑜 → ((∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))))
7170cbvrexvw 3225 . . . . . . . . 9 (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)) ↔ ∃𝑜 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)))
723ne0ii 4337 . . . . . . . . . . . 12 ω ≠ ∅
73 r19.44zv 4505 . . . . . . . . . . . 12 (ω ≠ ∅ → (∃𝑙 ∈ ω (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))))
7472, 73ax-mp 5 . . . . . . . . . . 11 (∃𝑙 ∈ ω (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) ↔ (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)))
75 eqeq1 2729 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑚𝑔𝑛) → (𝑦 = (𝑖𝑔𝑗) ↔ (𝑚𝑔𝑛) = (𝑖𝑔𝑗)))
76752rexbidv 3209 . . . . . . . . . . . . . . 15 (𝑦 = (𝑚𝑔𝑛) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑖𝑔𝑗)))
77 ovexd 7454 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) → (𝑚𝑔𝑛) ∈ V)
78 simpl 481 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑚 ∈ ω)
7943eqeq2d 2736 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑚 → ((𝑚𝑔𝑛) = (𝑖𝑔𝑗) ↔ (𝑚𝑔𝑛) = (𝑚𝑔𝑗)))
8079rexbidv 3168 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑚 → (∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑖𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑚𝑔𝑗)))
8180adantl 480 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑖 = 𝑚) → (∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑖𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑚𝑔𝑗)))
82 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → 𝑛 ∈ ω)
8352eqeq2d 2736 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 → ((𝑚𝑔𝑛) = (𝑚𝑔𝑗) ↔ (𝑚𝑔𝑛) = (𝑚𝑔𝑛)))
8483adantl 480 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑗 = 𝑛) → ((𝑚𝑔𝑛) = (𝑚𝑔𝑗) ↔ (𝑚𝑔𝑛) = (𝑚𝑔𝑛)))
85 eqidd 2726 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑔𝑛) = (𝑚𝑔𝑛))
8682, 84, 85rspcedvd 3608 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑚𝑔𝑗))
8778, 81, 86rspcedvd 3608 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑖𝑔𝑗))
8887ad5ant12 754 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑚𝑔𝑛) = (𝑖𝑔𝑗))
8976, 77, 88elrabd 3681 . . . . . . . . . . . . . 14 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) → (𝑚𝑔𝑛) ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)})
90 oveq1 7426 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚𝑔𝑛) → (𝑝𝑔𝑞) = ((𝑚𝑔𝑛)⊼𝑔𝑞))
9190eqeq2d 2736 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚𝑔𝑛) → (𝑥 = (𝑝𝑔𝑞) ↔ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞)))
9291rexbidv 3168 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑚𝑔𝑛) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ↔ ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞)))
93 eqidd 2726 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚𝑔𝑛) → 𝑘 = 𝑘)
94 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑝 = (𝑚𝑔𝑛) → 𝑝 = (𝑚𝑔𝑛))
9593, 94goaleq12d 35092 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑚𝑔𝑛) → ∀𝑔𝑘𝑝 = ∀𝑔𝑘(𝑚𝑔𝑛))
9695eqeq2d 2736 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑚𝑔𝑛) → (𝑥 = ∀𝑔𝑘𝑝𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
9796rexbidv 3168 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑚𝑔𝑛) → (∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝 ↔ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
9892, 97orbi12d 916 . . . . . . . . . . . . . . 15 (𝑝 = (𝑚𝑔𝑛) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))))
9998adantl 480 . . . . . . . . . . . . . 14 ((((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) ∧ 𝑝 = (𝑚𝑔𝑛)) → ((∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))))
100 ovexd 7454 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜𝑔𝑙) ∈ V)
101 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) → 𝑜 ∈ ω)
102101adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑜 ∈ ω)
103 oveq1 7426 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑜 → (𝑖𝑔𝑗) = (𝑜𝑔𝑗))
104103eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑜 → ((𝑜𝑔𝑙) = (𝑖𝑔𝑗) ↔ (𝑜𝑔𝑙) = (𝑜𝑔𝑗)))
105104rexbidv 3168 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑜 → (∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑖𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑜𝑔𝑗)))
106105adantl 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑖 = 𝑜) → (∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑖𝑔𝑗) ↔ ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑜𝑔𝑗)))
107 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → 𝑙 ∈ ω)
108 oveq2 7427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 𝑙 → (𝑜𝑔𝑗) = (𝑜𝑔𝑙))
109108eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = 𝑙 → ((𝑜𝑔𝑙) = (𝑜𝑔𝑗) ↔ (𝑜𝑔𝑙) = (𝑜𝑔𝑙)))
110109adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑗 = 𝑙) → ((𝑜𝑔𝑙) = (𝑜𝑔𝑗) ↔ (𝑜𝑔𝑙) = (𝑜𝑔𝑙)))
111 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜𝑔𝑙) = (𝑜𝑔𝑙))
112107, 110, 111rspcedvd 3608 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑜𝑔𝑗))
113102, 106, 112rspcedvd 3608 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑖𝑔𝑗))
114 eqeq1 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = (𝑜𝑔𝑙) → (𝑝 = (𝑖𝑔𝑗) ↔ (𝑜𝑔𝑙) = (𝑖𝑔𝑗)))
1151142rexbidv 3209 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = (𝑜𝑔𝑙) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑖𝑔𝑗)))
116 fmla0 35123 . . . . . . . . . . . . . . . . . . . . 21 (Fmla‘∅) = {𝑝 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑝 = (𝑖𝑔𝑗)}
117115, 116elrab2 3682 . . . . . . . . . . . . . . . . . . . 20 ((𝑜𝑔𝑙) ∈ (Fmla‘∅) ↔ ((𝑜𝑔𝑙) ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑜𝑔𝑙) = (𝑖𝑔𝑗)))
118100, 113, 117sylanbrc 581 . . . . . . . . . . . . . . . . . . 19 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑜𝑔𝑙) ∈ (Fmla‘∅))
119118adantr 479 . . . . . . . . . . . . . . . . . 18 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))) → (𝑜𝑔𝑙) ∈ (Fmla‘∅))
120 oveq2 7427 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = (𝑜𝑔𝑙) → ((𝑚𝑔𝑛)⊼𝑔𝑞) = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)))
121120eqeq2d 2736 . . . . . . . . . . . . . . . . . . 19 (𝑞 = (𝑜𝑔𝑙) → (𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))))
122121adantl 480 . . . . . . . . . . . . . . . . . 18 ((((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))) ∧ 𝑞 = (𝑜𝑔𝑙)) → (𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ↔ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))))
123 simpr 483 . . . . . . . . . . . . . . . . . 18 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))) → 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)))
124119, 122, 123rspcedvd 3608 . . . . . . . . . . . . . . . . 17 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙))) → ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞))
125124ex 411 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) → ∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞)))
126102adantr 479 . . . . . . . . . . . . . . . . . 18 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → 𝑜 ∈ ω)
12769adantl 480 . . . . . . . . . . . . . . . . . 18 ((((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) ∧ 𝑘 = 𝑜) → (𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛) ↔ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)))
128 simpr 483 . . . . . . . . . . . . . . . . . 18 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))
129126, 127, 128rspcedvd 3608 . . . . . . . . . . . . . . . . 17 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))
130129ex 411 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → (𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛) → ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
131125, 130orim12d 962 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛))))
132131imp 405 . . . . . . . . . . . . . 14 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) → (∃𝑞 ∈ (Fmla‘∅)𝑥 = ((𝑚𝑔𝑛)⊼𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)))
13389, 99, 132rspcedvd 3608 . . . . . . . . . . . . 13 (((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) ∧ (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛))) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))
134133ex 411 . . . . . . . . . . . 12 ((((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) ∧ 𝑙 ∈ ω) → ((𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)))
135134rexlimdva 3144 . . . . . . . . . . 11 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) → (∃𝑙 ∈ ω (𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)))
13674, 135biimtrrid 242 . . . . . . . . . 10 (((𝑚 ∈ ω ∧ 𝑛 ∈ ω) ∧ 𝑜 ∈ ω) → ((∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)))
137136rexlimdva 3144 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑜 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑜𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑜(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)))
13871, 137biimtrid 241 . . . . . . . 8 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)))
139138rexlimivv 3189 . . . . . . 7 (∃𝑚 ∈ ω ∃𝑛 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑚𝑔𝑛)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑚𝑔𝑛)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))
14061, 139sylbi 216 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)) → ∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝))
14142, 140impbii 208 . . . . 5 (∃𝑝 ∈ {𝑦 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑦 = (𝑖𝑔𝑗)} (∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
1428, 141bitri 274 . . . 4 (∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗)))
143142abbii 2795 . . 3 {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))}
1446, 143uneq12i 4158 . 2 ((Fmla‘∅) ∪ {𝑥 ∣ ∃𝑝 ∈ (Fmla‘∅)(∃𝑞 ∈ (Fmla‘∅)𝑥 = (𝑝𝑔𝑞) ∨ ∃𝑘 ∈ ω 𝑥 = ∀𝑔𝑘𝑝)}) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
1452, 5, 1443eqtri 2757 1 (Fmla‘1o) = (({∅} × (ω × ω)) ∪ {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∃𝑘 ∈ ω (∃𝑙 ∈ ω 𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∨ 𝑥 = ∀𝑔𝑘(𝑖𝑔𝑗))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  {cab 2702  wne 2929  wrex 3059  {crab 3418  Vcvv 3461  cun 3942  c0 4322  {csn 4630   × cxp 5676  suc csuc 6373  cfv 6549  (class class class)co 7419  ωcom 7871  1oc1o 8480  𝑔cgoe 35074  𝑔cgna 35075  𝑔cgol 35076  Fmlacfmla 35078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-map 8847  df-goel 35081  df-goal 35083  df-sat 35084  df-fmla 35086
This theorem is referenced by:  2goelgoanfmla1  35165
  Copyright terms: Public domain W3C validator