| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > simpcntrab | Structured version Visualization version GIF version | ||
| Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
| Ref | Expression |
|---|---|
| simpcntrab.a | ⊢ 𝐵 = (Base‘𝐺) |
| simpcntrab.b | ⊢ 0 = (0g‘𝐺) |
| simpcntrab.c | ⊢ 𝑍 = (Cntr‘𝐺) |
| simpcntrab.d | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Ref | Expression |
|---|---|
| simpcntrab | ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpcntrab.a | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | simpcntrab.b | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | simpcntrab.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
| 4 | 3 | simpggrpd 20027 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 5 | simpcntrab.c | . . . . . 6 ⊢ 𝑍 = (Cntr‘𝐺) | |
| 6 | 5 | cntrnsg 19276 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺)) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (NrmSGrp‘𝐺)) |
| 8 | 1, 2, 3, 7 | simpgnsgeqd 20033 | . . 3 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) |
| 9 | 8 | ancli 548 | . 2 ⊢ (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵))) |
| 10 | andi 1009 | . . 3 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) | |
| 11 | 10 | biimpi 216 | . 2 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = { 0 }) → 𝑍 = { 0 }) | |
| 13 | 12 | orim1i 909 | . 2 ⊢ (((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
| 14 | oveq2 7395 | . . . . . . 7 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝑍) = (𝐺 ↾s 𝐵)) | |
| 15 | 5 | oveq2i 7398 | . . . . . . 7 ⊢ (𝐺 ↾s 𝑍) = (𝐺 ↾s (Cntr‘𝐺)) |
| 16 | 14, 15 | eqtr3di 2779 | . . . . . 6 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
| 18 | 1 | ressid 17214 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
| 19 | 4, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐺) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = 𝐺) |
| 21 | 17, 20 | eqtr3d 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) = 𝐺) |
| 22 | eqid 2729 | . . . . . . 7 ⊢ (𝐺 ↾s (Cntr‘𝐺)) = (𝐺 ↾s (Cntr‘𝐺)) | |
| 23 | 22 | cntrabl 19773 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 24 | 4, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 26 | 21, 25 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → 𝐺 ∈ Abel) |
| 27 | 26 | orim2i 910 | . 2 ⊢ ((𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| 28 | 9, 11, 13, 27 | 4syl 19 | 1 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Grpcgrp 18865 NrmSGrpcnsg 19053 Cntrccntr 19248 Abelcabl 19711 SimpGrpcsimpg 20022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-cntz 19249 df-cntr 19250 df-cmn 19712 df-abl 19713 df-simpg 20023 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |