Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > simpcntrab | Structured version Visualization version GIF version |
Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
Ref | Expression |
---|---|
simpcntrab.a | ⊢ 𝐵 = (Base‘𝐺) |
simpcntrab.b | ⊢ 0 = (0g‘𝐺) |
simpcntrab.c | ⊢ 𝑍 = (Cntr‘𝐺) |
simpcntrab.d | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpcntrab | ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpcntrab.a | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | simpcntrab.b | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
3 | simpcntrab.d | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
4 | 3 | simpggrpd 19613 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Grp) |
5 | simpcntrab.c | . . . . . . 7 ⊢ 𝑍 = (Cntr‘𝐺) | |
6 | 5 | cntrnsg 18863 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (NrmSGrp‘𝐺)) |
8 | 1, 2, 3, 7 | simpgnsgeqd 19619 | . . . 4 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) |
9 | 8 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵))) |
10 | andi 1004 | . . . 4 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) | |
11 | 10 | biimpi 215 | . . 3 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
12 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = { 0 }) → 𝑍 = { 0 }) | |
13 | 12 | orim1i 906 | . . 3 ⊢ (((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
14 | 9, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
15 | oveq2 7263 | . . . . . . 7 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝑍) = (𝐺 ↾s 𝐵)) | |
16 | 5 | oveq2i 7266 | . . . . . . 7 ⊢ (𝐺 ↾s 𝑍) = (𝐺 ↾s (Cntr‘𝐺)) |
17 | 15, 16 | eqtr3di 2794 | . . . . . 6 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
19 | 1 | ressid 16880 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
20 | 4, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐺) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = 𝐺) |
22 | 18, 21 | eqtr3d 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) = 𝐺) |
23 | eqid 2738 | . . . . . . 7 ⊢ (𝐺 ↾s (Cntr‘𝐺)) = (𝐺 ↾s (Cntr‘𝐺)) | |
24 | 23 | cntrabl 19359 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
25 | 4, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
27 | 22, 26 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → 𝐺 ∈ Abel) |
28 | 27 | orim2i 907 | . 2 ⊢ ((𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
29 | 14, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Grpcgrp 18492 NrmSGrpcnsg 18665 Cntrccntr 18837 Abelcabl 19302 SimpGrpcsimpg 19608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-nsg 18668 df-cntz 18838 df-cntr 18839 df-cmn 19303 df-abl 19304 df-simpg 19609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |