| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > simpcntrab | Structured version Visualization version GIF version | ||
| Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
| Ref | Expression |
|---|---|
| simpcntrab.a | ⊢ 𝐵 = (Base‘𝐺) |
| simpcntrab.b | ⊢ 0 = (0g‘𝐺) |
| simpcntrab.c | ⊢ 𝑍 = (Cntr‘𝐺) |
| simpcntrab.d | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Ref | Expression |
|---|---|
| simpcntrab | ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpcntrab.a | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | simpcntrab.b | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | simpcntrab.d | . . . 4 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
| 4 | 3 | simpggrpd 20011 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 5 | simpcntrab.c | . . . . . 6 ⊢ 𝑍 = (Cntr‘𝐺) | |
| 6 | 5 | cntrnsg 19258 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺)) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (NrmSGrp‘𝐺)) |
| 8 | 1, 2, 3, 7 | simpgnsgeqd 20017 | . . 3 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) |
| 9 | 8 | ancli 548 | . 2 ⊢ (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵))) |
| 10 | andi 1009 | . . 3 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) | |
| 11 | 10 | biimpi 216 | . 2 ⊢ ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = { 0 }) → 𝑍 = { 0 }) | |
| 13 | 12 | orim1i 909 | . 2 ⊢ (((𝜑 ∧ 𝑍 = { 0 }) ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵))) |
| 14 | oveq2 7377 | . . . . . . 7 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝑍) = (𝐺 ↾s 𝐵)) | |
| 15 | 5 | oveq2i 7380 | . . . . . . 7 ⊢ (𝐺 ↾s 𝑍) = (𝐺 ↾s (Cntr‘𝐺)) |
| 16 | 14, 15 | eqtr3di 2779 | . . . . . 6 ⊢ (𝑍 = 𝐵 → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = (𝐺 ↾s (Cntr‘𝐺))) |
| 18 | 1 | ressid 17190 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) = 𝐺) |
| 19 | 4, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐺) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s 𝐵) = 𝐺) |
| 21 | 17, 20 | eqtr3d 2766 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) = 𝐺) |
| 22 | eqid 2729 | . . . . . . 7 ⊢ (𝐺 ↾s (Cntr‘𝐺)) = (𝐺 ↾s (Cntr‘𝐺)) | |
| 23 | 22 | cntrabl 19757 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 24 | 4, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 25 | 24 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → (𝐺 ↾s (Cntr‘𝐺)) ∈ Abel) |
| 26 | 21, 25 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 𝐵) → 𝐺 ∈ Abel) |
| 27 | 26 | orim2i 910 | . 2 ⊢ ((𝑍 = { 0 } ∨ (𝜑 ∧ 𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| 28 | 9, 11, 13, 27 | 4syl 19 | 1 ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Grpcgrp 18847 NrmSGrpcnsg 19035 Cntrccntr 19230 Abelcabl 19695 SimpGrpcsimpg 20006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-nsg 19038 df-cntz 19231 df-cntr 19232 df-cmn 19696 df-abl 19697 df-simpg 20007 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |