Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  simpcntrab Structured version   Visualization version   GIF version

Theorem simpcntrab 46861
Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.)
Hypotheses
Ref Expression
simpcntrab.a 𝐵 = (Base‘𝐺)
simpcntrab.b 0 = (0g𝐺)
simpcntrab.c 𝑍 = (Cntr‘𝐺)
simpcntrab.d (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
simpcntrab (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))

Proof of Theorem simpcntrab
StepHypRef Expression
1 simpcntrab.a . . . 4 𝐵 = (Base‘𝐺)
2 simpcntrab.b . . . 4 0 = (0g𝐺)
3 simpcntrab.d . . . 4 (𝜑𝐺 ∈ SimpGrp)
43simpggrpd 20011 . . . . 5 (𝜑𝐺 ∈ Grp)
5 simpcntrab.c . . . . . 6 𝑍 = (Cntr‘𝐺)
65cntrnsg 19258 . . . . 5 (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺))
74, 6syl 17 . . . 4 (𝜑𝑍 ∈ (NrmSGrp‘𝐺))
81, 2, 3, 7simpgnsgeqd 20017 . . 3 (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵))
98ancli 548 . 2 (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)))
10 andi 1009 . . 3 ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)))
1110biimpi 216 . 2 ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)))
12 simpr 484 . . 3 ((𝜑𝑍 = { 0 }) → 𝑍 = { 0 })
1312orim1i 909 . 2 (((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑𝑍 = 𝐵)))
14 oveq2 7377 . . . . . . 7 (𝑍 = 𝐵 → (𝐺s 𝑍) = (𝐺s 𝐵))
155oveq2i 7380 . . . . . . 7 (𝐺s 𝑍) = (𝐺s (Cntr‘𝐺))
1614, 15eqtr3di 2779 . . . . . 6 (𝑍 = 𝐵 → (𝐺s 𝐵) = (𝐺s (Cntr‘𝐺)))
1716adantl 481 . . . . 5 ((𝜑𝑍 = 𝐵) → (𝐺s 𝐵) = (𝐺s (Cntr‘𝐺)))
181ressid 17190 . . . . . . 7 (𝐺 ∈ Grp → (𝐺s 𝐵) = 𝐺)
194, 18syl 17 . . . . . 6 (𝜑 → (𝐺s 𝐵) = 𝐺)
2019adantr 480 . . . . 5 ((𝜑𝑍 = 𝐵) → (𝐺s 𝐵) = 𝐺)
2117, 20eqtr3d 2766 . . . 4 ((𝜑𝑍 = 𝐵) → (𝐺s (Cntr‘𝐺)) = 𝐺)
22 eqid 2729 . . . . . . 7 (𝐺s (Cntr‘𝐺)) = (𝐺s (Cntr‘𝐺))
2322cntrabl 19757 . . . . . 6 (𝐺 ∈ Grp → (𝐺s (Cntr‘𝐺)) ∈ Abel)
244, 23syl 17 . . . . 5 (𝜑 → (𝐺s (Cntr‘𝐺)) ∈ Abel)
2524adantr 480 . . . 4 ((𝜑𝑍 = 𝐵) → (𝐺s (Cntr‘𝐺)) ∈ Abel)
2621, 25eqeltrrd 2829 . . 3 ((𝜑𝑍 = 𝐵) → 𝐺 ∈ Abel)
2726orim2i 910 . 2 ((𝑍 = { 0 } ∨ (𝜑𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))
289, 11, 13, 274syl 19 1 (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  0gc0g 17378  Grpcgrp 18847  NrmSGrpcnsg 19035  Cntrccntr 19230  Abelcabl 19695  SimpGrpcsimpg 20006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-nsg 19038  df-cntz 19231  df-cntr 19232  df-cmn 19696  df-abl 19697  df-simpg 20007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator