Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  simpcntrab Structured version   Visualization version   GIF version

Theorem simpcntrab 46885
Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.)
Hypotheses
Ref Expression
simpcntrab.a 𝐵 = (Base‘𝐺)
simpcntrab.b 0 = (0g𝐺)
simpcntrab.c 𝑍 = (Cntr‘𝐺)
simpcntrab.d (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
simpcntrab (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))

Proof of Theorem simpcntrab
StepHypRef Expression
1 simpcntrab.a . . . 4 𝐵 = (Base‘𝐺)
2 simpcntrab.b . . . 4 0 = (0g𝐺)
3 simpcntrab.d . . . 4 (𝜑𝐺 ∈ SimpGrp)
43simpggrpd 20115 . . . . 5 (𝜑𝐺 ∈ Grp)
5 simpcntrab.c . . . . . 6 𝑍 = (Cntr‘𝐺)
65cntrnsg 19362 . . . . 5 (𝐺 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝐺))
74, 6syl 17 . . . 4 (𝜑𝑍 ∈ (NrmSGrp‘𝐺))
81, 2, 3, 7simpgnsgeqd 20121 . . 3 (𝜑 → (𝑍 = { 0 } ∨ 𝑍 = 𝐵))
98ancli 548 . 2 (𝜑 → (𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)))
10 andi 1010 . . 3 ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) ↔ ((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)))
1110biimpi 216 . 2 ((𝜑 ∧ (𝑍 = { 0 } ∨ 𝑍 = 𝐵)) → ((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)))
12 simpr 484 . . 3 ((𝜑𝑍 = { 0 }) → 𝑍 = { 0 })
1312orim1i 910 . 2 (((𝜑𝑍 = { 0 }) ∨ (𝜑𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ (𝜑𝑍 = 𝐵)))
14 oveq2 7439 . . . . . . 7 (𝑍 = 𝐵 → (𝐺s 𝑍) = (𝐺s 𝐵))
155oveq2i 7442 . . . . . . 7 (𝐺s 𝑍) = (𝐺s (Cntr‘𝐺))
1614, 15eqtr3di 2792 . . . . . 6 (𝑍 = 𝐵 → (𝐺s 𝐵) = (𝐺s (Cntr‘𝐺)))
1716adantl 481 . . . . 5 ((𝜑𝑍 = 𝐵) → (𝐺s 𝐵) = (𝐺s (Cntr‘𝐺)))
181ressid 17290 . . . . . . 7 (𝐺 ∈ Grp → (𝐺s 𝐵) = 𝐺)
194, 18syl 17 . . . . . 6 (𝜑 → (𝐺s 𝐵) = 𝐺)
2019adantr 480 . . . . 5 ((𝜑𝑍 = 𝐵) → (𝐺s 𝐵) = 𝐺)
2117, 20eqtr3d 2779 . . . 4 ((𝜑𝑍 = 𝐵) → (𝐺s (Cntr‘𝐺)) = 𝐺)
22 eqid 2737 . . . . . . 7 (𝐺s (Cntr‘𝐺)) = (𝐺s (Cntr‘𝐺))
2322cntrabl 19861 . . . . . 6 (𝐺 ∈ Grp → (𝐺s (Cntr‘𝐺)) ∈ Abel)
244, 23syl 17 . . . . 5 (𝜑 → (𝐺s (Cntr‘𝐺)) ∈ Abel)
2524adantr 480 . . . 4 ((𝜑𝑍 = 𝐵) → (𝐺s (Cntr‘𝐺)) ∈ Abel)
2621, 25eqeltrrd 2842 . . 3 ((𝜑𝑍 = 𝐵) → 𝐺 ∈ Abel)
2726orim2i 911 . 2 ((𝑍 = { 0 } ∨ (𝜑𝑍 = 𝐵)) → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))
289, 11, 13, 274syl 19 1 (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  0gc0g 17484  Grpcgrp 18951  NrmSGrpcnsg 19139  Cntrccntr 19334  Abelcabl 19799  SimpGrpcsimpg 20110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-nsg 19142  df-cntz 19335  df-cntr 19336  df-cmn 19800  df-abl 19801  df-simpg 20111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator