Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.18 | Structured version Visualization version GIF version |
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
pm14.18 | ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaexeu 41925 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
2 | spsbc 3724 | . 2 ⊢ ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 [wsbc 3711 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |