Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.18 Structured version   Visualization version   GIF version

Theorem pm14.18 42800
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
pm14.18 (∃!𝑥𝜑 → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))

Proof of Theorem pm14.18
StepHypRef Expression
1 iotaexeu 42790 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
2 spsbc 3756 . 2 ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
31, 2syl 17 1 (∃!𝑥𝜑 → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wcel 2107  ∃!weu 2563  Vcvv 3447  [wsbc 3743  cio 6450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3449  df-sbc 3744  df-un 3919  df-in 3921  df-ss 3931  df-sn 4591  df-pr 4593  df-uni 4870  df-iota 6452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator