| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.18 | Structured version Visualization version GIF version | ||
| Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| pm14.18 | ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaexeu 44409 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
| 2 | spsbc 3783 | . 2 ⊢ ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2107 ∃!weu 2566 Vcvv 3463 [wsbc 3770 ℩cio 6492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-sbc 3771 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4888 df-iota 6494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |