![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.18 | Structured version Visualization version GIF version |
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
pm14.18 | ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaexeu 44382 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
2 | spsbc 3817 | . 2 ⊢ ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 [wsbc 3804 ℩cio 6518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |