![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.18 | Structured version Visualization version GIF version |
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
pm14.18 | ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaexeu 39578 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
2 | spsbc 3665 | . 2 ⊢ ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1599 ∈ wcel 2107 ∃!weu 2586 Vcvv 3398 [wsbc 3652 ℩cio 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-v 3400 df-sbc 3653 df-un 3797 df-sn 4399 df-pr 4401 df-uni 4672 df-iota 6099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |