![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.18 | Structured version Visualization version GIF version |
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
pm14.18 | ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaexeu 42946 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V) | |
2 | spsbc 3786 | . 2 ⊢ ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → (∀𝑥𝜓 → [(℩𝑥𝜑) / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 ∃!weu 2561 Vcvv 3473 [wsbc 3773 ℩cio 6482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-sbc 3774 df-un 3949 df-in 3951 df-ss 3961 df-sn 4623 df-pr 4625 df-uni 4902 df-iota 6484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |