Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.18 Structured version   Visualization version   GIF version

Theorem pm14.18 44419
Description: Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
pm14.18 (∃!𝑥𝜑 → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))

Proof of Theorem pm14.18
StepHypRef Expression
1 iotaexeu 44409 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
2 spsbc 3783 . 2 ((℩𝑥𝜑) ∈ V → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
31, 2syl 17 1 (∃!𝑥𝜑 → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2107  ∃!weu 2566  Vcvv 3463  [wsbc 3770  cio 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-sbc 3771  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609  df-uni 4888  df-iota 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator