Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nofv | Structured version Visualization version GIF version |
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
Ref | Expression |
---|---|
nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 893 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
2 | ndmfv 6786 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
4 | nofun 33779 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
5 | norn 33781 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | fvelrn 6936 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
7 | ssel 3910 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1o, 2o} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴‘𝑋) ∈ {1o, 2o})) |
9 | 8 | impancom 451 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) |
10 | 1oex 8280 | . . . . . . 7 ⊢ 1o ∈ V | |
11 | 2on 8275 | . . . . . . . 8 ⊢ 2o ∈ On | |
12 | 11 | elexi 3441 | . . . . . . 7 ⊢ 2o ∈ V |
13 | 10, 12 | elpr2 4583 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1o, 2o} ↔ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
14 | 9, 13 | syl6ib 250 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
15 | 4, 5, 14 | syl2anc 583 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
16 | 3, 15 | orim12d 961 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)))) |
17 | 1, 16 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
18 | 3orass 1088 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) | |
19 | 17, 18 | sylibr 233 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 {cpr 4560 dom cdm 5580 ran crn 5581 Oncon0 6251 Fun wfun 6412 ‘cfv 6418 1oc1o 8260 2oc2o 8261 No csur 33770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1o 8267 df-2o 8268 df-no 33773 |
This theorem is referenced by: nolesgn2o 33801 nogesgn1o 33803 nosep1o 33811 nosep2o 33812 nolt02o 33825 nogt01o 33826 nosupbnd1lem5 33842 nosupbnd1lem6 33843 noinfbnd1lem5 33857 noinfbnd1lem6 33858 |
Copyright terms: Public domain | W3C validator |