MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofv Structured version   Visualization version   GIF version

Theorem nofv 27545
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.)
Assertion
Ref Expression
nofv (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))

Proof of Theorem nofv
StepHypRef Expression
1 pm2.1 896 . . 3 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴)
2 ndmfv 6875 . . . . 5 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
32a1i 11 . . . 4 (𝐴 No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅))
4 nofun 27537 . . . . 5 (𝐴 No → Fun 𝐴)
5 norn 27539 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
6 fvelrn 7030 . . . . . . . 8 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
7 ssel 3937 . . . . . . . 8 (ran 𝐴 ⊆ {1o, 2o} → ((𝐴𝑋) ∈ ran 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
86, 7syl5com 31 . . . . . . 7 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴𝑋) ∈ {1o, 2o}))
98impancom 451 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
10 1oex 8421 . . . . . . 7 1o ∈ V
11 2on 8424 . . . . . . . 8 2o ∈ On
1211elexi 3467 . . . . . . 7 2o ∈ V
1310, 12elpr2 4612 . . . . . 6 ((𝐴𝑋) ∈ {1o, 2o} ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
149, 13imbitrdi 251 . . . . 5 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
154, 5, 14syl2anc 584 . . . 4 (𝐴 No → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
163, 15orim12d 966 . . 3 (𝐴 No → ((¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴) → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))))
171, 16mpi 20 . 2 (𝐴 No → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
18 3orass 1089 . 2 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
1917, 18sylibr 234 1 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wss 3911  c0 4292  {cpr 4587  dom cdm 5631  ran crn 5632  Oncon0 6320  Fun wfun 6493  cfv 6499  1oc1o 8404  2oc2o 8405   No csur 27527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27530
This theorem is referenced by:  nolesgn2o  27559  nogesgn1o  27561  nosep1o  27569  nosep2o  27570  nolt02o  27583  nogt01o  27584  nosupbnd1lem5  27600  nosupbnd1lem6  27601  noinfbnd1lem5  27615  noinfbnd1lem6  27616
  Copyright terms: Public domain W3C validator