| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofv | Structured version Visualization version GIF version | ||
| Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
| 2 | ndmfv 6849 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
| 4 | nofun 27583 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
| 5 | norn 27585 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
| 6 | fvelrn 7004 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
| 7 | ssel 3923 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1o, 2o} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) | |
| 8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴‘𝑋) ∈ {1o, 2o})) |
| 9 | 8 | impancom 451 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) |
| 10 | 1oex 8390 | . . . . . . 7 ⊢ 1o ∈ V | |
| 11 | 2on 8393 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 12 | 11 | elexi 3459 | . . . . . . 7 ⊢ 2o ∈ V |
| 13 | 10, 12 | elpr2 4598 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1o, 2o} ↔ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| 14 | 9, 13 | imbitrdi 251 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 15 | 4, 5, 14 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 16 | 3, 15 | orim12d 966 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)))) |
| 17 | 1, 16 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 18 | 3orass 1089 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4278 {cpr 4573 dom cdm 5611 ran crn 5612 Oncon0 6301 Fun wfun 6470 ‘cfv 6476 1oc1o 8373 2oc2o 8374 No csur 27573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-1o 8380 df-2o 8381 df-no 27576 |
| This theorem is referenced by: nolesgn2o 27605 nogesgn1o 27607 nosep1o 27615 nosep2o 27616 nolt02o 27629 nogt01o 27630 nosupbnd1lem5 27646 nosupbnd1lem6 27647 noinfbnd1lem5 27661 noinfbnd1lem6 27662 |
| Copyright terms: Public domain | W3C validator |