![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nofv | Structured version Visualization version GIF version |
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
Ref | Expression |
---|---|
nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 895 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
2 | ndmfv 6926 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
4 | nofun 27569 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
5 | norn 27571 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | fvelrn 7080 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
7 | ssel 3971 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1o, 2o} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴‘𝑋) ∈ {1o, 2o})) |
9 | 8 | impancom 451 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) |
10 | 1oex 8490 | . . . . . . 7 ⊢ 1o ∈ V | |
11 | 2on 8494 | . . . . . . . 8 ⊢ 2o ∈ On | |
12 | 11 | elexi 3489 | . . . . . . 7 ⊢ 2o ∈ V |
13 | 10, 12 | elpr2 4649 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1o, 2o} ↔ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
14 | 9, 13 | imbitrdi 250 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
15 | 4, 5, 14 | syl2anc 583 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
16 | 3, 15 | orim12d 963 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)))) |
17 | 1, 16 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
18 | 3orass 1088 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) | |
19 | 17, 18 | sylibr 233 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∨ w3o 1084 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ∅c0 4318 {cpr 4626 dom cdm 5672 ran crn 5673 Oncon0 6363 Fun wfun 6536 ‘cfv 6542 1oc1o 8473 2oc2o 8474 No csur 27560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-1o 8480 df-2o 8481 df-no 27563 |
This theorem is referenced by: nolesgn2o 27591 nogesgn1o 27593 nosep1o 27601 nosep2o 27602 nolt02o 27615 nogt01o 27616 nosupbnd1lem5 27632 nosupbnd1lem6 27633 noinfbnd1lem5 27647 noinfbnd1lem6 27648 |
Copyright terms: Public domain | W3C validator |