MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofv Structured version   Visualization version   GIF version

Theorem nofv 27720
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.)
Assertion
Ref Expression
nofv (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))

Proof of Theorem nofv
StepHypRef Expression
1 pm2.1 895 . . 3 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴)
2 ndmfv 6955 . . . . 5 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
32a1i 11 . . . 4 (𝐴 No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅))
4 nofun 27712 . . . . 5 (𝐴 No → Fun 𝐴)
5 norn 27714 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
6 fvelrn 7110 . . . . . . . 8 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
7 ssel 4002 . . . . . . . 8 (ran 𝐴 ⊆ {1o, 2o} → ((𝐴𝑋) ∈ ran 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
86, 7syl5com 31 . . . . . . 7 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴𝑋) ∈ {1o, 2o}))
98impancom 451 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
10 1oex 8532 . . . . . . 7 1o ∈ V
11 2on 8536 . . . . . . . 8 2o ∈ On
1211elexi 3511 . . . . . . 7 2o ∈ V
1310, 12elpr2 4674 . . . . . 6 ((𝐴𝑋) ∈ {1o, 2o} ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
149, 13imbitrdi 251 . . . . 5 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
154, 5, 14syl2anc 583 . . . 4 (𝐴 No → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
163, 15orim12d 965 . . 3 (𝐴 No → ((¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴) → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))))
171, 16mpi 20 . 2 (𝐴 No → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
18 3orass 1090 . 2 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
1917, 18sylibr 234 1 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wss 3976  c0 4352  {cpr 4650  dom cdm 5700  ran crn 5701  Oncon0 6395  Fun wfun 6567  cfv 6573  1oc1o 8515  2oc2o 8516   No csur 27702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705
This theorem is referenced by:  nolesgn2o  27734  nogesgn1o  27736  nosep1o  27744  nosep2o  27745  nolt02o  27758  nogt01o  27759  nosupbnd1lem5  27775  nosupbnd1lem6  27776  noinfbnd1lem5  27790  noinfbnd1lem6  27791
  Copyright terms: Public domain W3C validator