| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nofv | Structured version Visualization version GIF version | ||
| Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
| 2 | ndmfv 6916 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
| 4 | nofun 27618 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
| 5 | norn 27620 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
| 6 | fvelrn 7071 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
| 7 | ssel 3957 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1o, 2o} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) | |
| 8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴‘𝑋) ∈ {1o, 2o})) |
| 9 | 8 | impancom 451 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) |
| 10 | 1oex 8495 | . . . . . . 7 ⊢ 1o ∈ V | |
| 11 | 2on 8499 | . . . . . . . 8 ⊢ 2o ∈ On | |
| 12 | 11 | elexi 3487 | . . . . . . 7 ⊢ 2o ∈ V |
| 13 | 10, 12 | elpr2 4633 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1o, 2o} ↔ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| 14 | 9, 13 | imbitrdi 251 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 15 | 4, 5, 14 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 16 | 3, 15 | orim12d 966 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)))) |
| 17 | 1, 16 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
| 18 | 3orass 1089 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 {cpr 4608 dom cdm 5659 ran crn 5660 Oncon0 6357 Fun wfun 6530 ‘cfv 6536 1oc1o 8478 2oc2o 8479 No csur 27608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1o 8485 df-2o 8486 df-no 27611 |
| This theorem is referenced by: nolesgn2o 27640 nogesgn1o 27642 nosep1o 27650 nosep2o 27651 nolt02o 27664 nogt01o 27665 nosupbnd1lem5 27681 nosupbnd1lem6 27682 noinfbnd1lem5 27696 noinfbnd1lem6 27697 |
| Copyright terms: Public domain | W3C validator |