MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nofv Structured version   Visualization version   GIF version

Theorem nofv 27717
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.)
Assertion
Ref Expression
nofv (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))

Proof of Theorem nofv
StepHypRef Expression
1 pm2.1 896 . . 3 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴)
2 ndmfv 6942 . . . . 5 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
32a1i 11 . . . 4 (𝐴 No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅))
4 nofun 27709 . . . . 5 (𝐴 No → Fun 𝐴)
5 norn 27711 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
6 fvelrn 7096 . . . . . . . 8 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
7 ssel 3989 . . . . . . . 8 (ran 𝐴 ⊆ {1o, 2o} → ((𝐴𝑋) ∈ ran 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
86, 7syl5com 31 . . . . . . 7 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴𝑋) ∈ {1o, 2o}))
98impancom 451 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
10 1oex 8515 . . . . . . 7 1o ∈ V
11 2on 8519 . . . . . . . 8 2o ∈ On
1211elexi 3501 . . . . . . 7 2o ∈ V
1310, 12elpr2 4657 . . . . . 6 ((𝐴𝑋) ∈ {1o, 2o} ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
149, 13imbitrdi 251 . . . . 5 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
154, 5, 14syl2anc 584 . . . 4 (𝐴 No → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
163, 15orim12d 966 . . 3 (𝐴 No → ((¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴) → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))))
171, 16mpi 20 . 2 (𝐴 No → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
18 3orass 1089 . 2 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
1917, 18sylibr 234 1 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1537  wcel 2106  wss 3963  c0 4339  {cpr 4633  dom cdm 5689  ran crn 5690  Oncon0 6386  Fun wfun 6557  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702
This theorem is referenced by:  nolesgn2o  27731  nogesgn1o  27733  nosep1o  27741  nosep2o  27742  nolt02o  27755  nogt01o  27756  nosupbnd1lem5  27772  nosupbnd1lem6  27773  noinfbnd1lem5  27787  noinfbnd1lem6  27788
  Copyright terms: Public domain W3C validator