Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nofv Structured version   Visualization version   GIF version

Theorem nofv 33860
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.)
Assertion
Ref Expression
nofv (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))

Proof of Theorem nofv
StepHypRef Expression
1 pm2.1 894 . . 3 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴)
2 ndmfv 6804 . . . . 5 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
32a1i 11 . . . 4 (𝐴 No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅))
4 nofun 33852 . . . . 5 (𝐴 No → Fun 𝐴)
5 norn 33854 . . . . 5 (𝐴 No → ran 𝐴 ⊆ {1o, 2o})
6 fvelrn 6954 . . . . . . . 8 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (𝐴𝑋) ∈ ran 𝐴)
7 ssel 3914 . . . . . . . 8 (ran 𝐴 ⊆ {1o, 2o} → ((𝐴𝑋) ∈ ran 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
86, 7syl5com 31 . . . . . . 7 ((Fun 𝐴𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴𝑋) ∈ {1o, 2o}))
98impancom 452 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴𝑋) ∈ {1o, 2o}))
10 1oex 8307 . . . . . . 7 1o ∈ V
11 2on 8311 . . . . . . . 8 2o ∈ On
1211elexi 3451 . . . . . . 7 2o ∈ V
1310, 12elpr2 4586 . . . . . 6 ((𝐴𝑋) ∈ {1o, 2o} ↔ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
149, 13syl6ib 250 . . . . 5 ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
154, 5, 14syl2anc 584 . . . 4 (𝐴 No → (𝑋 ∈ dom 𝐴 → ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
163, 15orim12d 962 . . 3 (𝐴 No → ((¬ 𝑋 ∈ dom 𝐴𝑋 ∈ dom 𝐴) → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))))
171, 16mpi 20 . 2 (𝐴 No → ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
18 3orass 1089 . 2 (((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o) ↔ ((𝐴𝑋) = ∅ ∨ ((𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o)))
1917, 18sylibr 233 1 (𝐴 No → ((𝐴𝑋) = ∅ ∨ (𝐴𝑋) = 1o ∨ (𝐴𝑋) = 2o))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106  wss 3887  c0 4256  {cpr 4563  dom cdm 5589  ran crn 5590  Oncon0 6266  Fun wfun 6427  cfv 6433  1oc1o 8290  2oc2o 8291   No csur 33843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846
This theorem is referenced by:  nolesgn2o  33874  nogesgn1o  33876  nosep1o  33884  nosep2o  33885  nolt02o  33898  nogt01o  33899  nosupbnd1lem5  33915  nosupbnd1lem6  33916  noinfbnd1lem5  33930  noinfbnd1lem6  33931
  Copyright terms: Public domain W3C validator