![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nofv | Structured version Visualization version GIF version |
Description: The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
Ref | Expression |
---|---|
nofv | ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 883 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) | |
2 | ndmfv 6476 | . . . . 5 ⊢ (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ No → (¬ 𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅)) |
4 | nofun 32391 | . . . . 5 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
5 | norn 32393 | . . . . 5 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | |
6 | fvelrn 6616 | . . . . . . . 8 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
7 | ssel 3815 | . . . . . . . 8 ⊢ (ran 𝐴 ⊆ {1o, 2o} → ((𝐴‘𝑋) ∈ ran 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (ran 𝐴 ⊆ {1o, 2o} → (𝐴‘𝑋) ∈ {1o, 2o})) |
9 | 8 | impancom 445 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) ∈ {1o, 2o})) |
10 | 1oex 7851 | . . . . . . 7 ⊢ 1o ∈ V | |
11 | 2on 7852 | . . . . . . . 8 ⊢ 2o ∈ On | |
12 | 11 | elexi 3415 | . . . . . . 7 ⊢ 2o ∈ V |
13 | 10, 12 | elpr2 4422 | . . . . . 6 ⊢ ((𝐴‘𝑋) ∈ {1o, 2o} ↔ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
14 | 9, 13 | syl6ib 243 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ran 𝐴 ⊆ {1o, 2o}) → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
15 | 4, 5, 14 | syl2anc 579 | . . . 4 ⊢ (𝐴 ∈ No → (𝑋 ∈ dom 𝐴 → ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
16 | 3, 15 | orim12d 950 | . . 3 ⊢ (𝐴 ∈ No → ((¬ 𝑋 ∈ dom 𝐴 ∨ 𝑋 ∈ dom 𝐴) → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)))) |
17 | 1, 16 | mpi 20 | . 2 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) |
18 | 3orass 1074 | . 2 ⊢ (((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o) ↔ ((𝐴‘𝑋) = ∅ ∨ ((𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o))) | |
19 | 17, 18 | sylibr 226 | 1 ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 ∨ w3o 1070 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∅c0 4141 {cpr 4400 dom cdm 5355 ran crn 5356 Oncon0 5976 Fun wfun 6129 ‘cfv 6135 1oc1o 7836 2oc2o 7837 No csur 32382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-1o 7843 df-2o 7844 df-no 32385 |
This theorem is referenced by: nolesgn2o 32413 nosep1o 32421 nolt02o 32434 nosupbnd1lem5 32447 nosupbnd1lem6 32448 |
Copyright terms: Public domain | W3C validator |