MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttric Structured version   Visualization version   GIF version

Theorem lelttric 11269
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
lelttric ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem lelttric
StepHypRef Expression
1 pm2.1 896 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 lenlt 11240 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 916 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 258 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846  wcel 2107   class class class wbr 5110  cr 11057   < clt 11196  cle 11197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-xp 5644  df-cnv 5646  df-xr 11200  df-le 11202
This theorem is referenced by:  ltlecasei  11270  fzsplit2  13473  uzsplit  13520  fzospliti  13611  fzouzsplit  13614  discr1  14149  faclbnd  14197  faclbnd4lem1  14200  faclbnd4lem4  14203  dvdslelem  16198  dvdsprmpweqle  16765  icccmplem2  24202  icccmp  24204  bcmono  26641  bpos1lem  26646  bposlem3  26650  bpos  26657  fzsplit3  31739  submateq  32430  lzunuz  41120  jm2.24  41316  fzuntgd  41804  iccpartnel  45704  bgoldbtbnd  46075  tgoldbach  46083  reorelicc  46870
  Copyright terms: Public domain W3C validator