Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lelttric | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
lelttric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 893 | . 2 ⊢ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴) | |
2 | lenlt 10984 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 2 | orbi1d 913 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴))) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 |
This theorem is referenced by: ltlecasei 11013 fzsplit2 13210 uzsplit 13257 fzospliti 13347 fzouzsplit 13350 discr1 13882 faclbnd 13932 faclbnd4lem1 13935 faclbnd4lem4 13938 dvdslelem 15946 dvdsprmpweqle 16515 icccmplem2 23892 icccmp 23894 bcmono 26330 bpos1lem 26335 bposlem3 26339 bpos 26346 fzsplit3 31017 submateq 31661 lzunuz 40506 jm2.24 40701 iccpartnel 44778 bgoldbtbnd 45149 tgoldbach 45157 reorelicc 45944 |
Copyright terms: Public domain | W3C validator |