MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttric Structured version   Visualization version   GIF version

Theorem lelttric 11326
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
lelttric ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem lelttric
StepHypRef Expression
1 pm2.1 894 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 lenlt 11297 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 914 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 258 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  wcel 2105   class class class wbr 5148  cr 11112   < clt 11253  cle 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-xr 11257  df-le 11259
This theorem is referenced by:  ltlecasei  11327  fzsplit2  13531  uzsplit  13578  fzospliti  13669  fzouzsplit  13672  discr1  14207  faclbnd  14255  faclbnd4lem1  14258  faclbnd4lem4  14261  dvdslelem  16257  dvdsprmpweqle  16824  icccmplem2  24560  icccmp  24562  bcmono  27017  bpos1lem  27022  bposlem3  27026  bpos  27033  fzsplit3  32273  submateq  33088  lzunuz  41809  jm2.24  42005  fzuntgd  42512  iccpartnel  46405  bgoldbtbnd  46776  tgoldbach  46784  reorelicc  47484
  Copyright terms: Public domain W3C validator