Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lelttric | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
lelttric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 895 | . 2 ⊢ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴) | |
2 | lenlt 11159 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 2 | orbi1d 915 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴))) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 ∈ wcel 2106 class class class wbr 5097 ℝcr 10976 < clt 11115 ≤ cle 11116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-xp 5631 df-cnv 5633 df-xr 11119 df-le 11121 |
This theorem is referenced by: ltlecasei 11189 fzsplit2 13387 uzsplit 13434 fzospliti 13525 fzouzsplit 13528 discr1 14060 faclbnd 14110 faclbnd4lem1 14113 faclbnd4lem4 14116 dvdslelem 16118 dvdsprmpweqle 16685 icccmplem2 24092 icccmp 24094 bcmono 26531 bpos1lem 26536 bposlem3 26540 bpos 26547 fzsplit3 31400 submateq 32055 lzunuz 40901 jm2.24 41097 fzuntgd 41437 iccpartnel 45306 bgoldbtbnd 45677 tgoldbach 45685 reorelicc 46472 |
Copyright terms: Public domain | W3C validator |