MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttric Structured version   Visualization version   GIF version

Theorem lelttric 11223
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
lelttric ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem lelttric
StepHypRef Expression
1 pm2.1 896 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 lenlt 11194 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 916 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 258 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2109   class class class wbr 5092  cr 11008   < clt 11149  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-xr 11153  df-le 11155
This theorem is referenced by:  ltlecasei  11224  fzsplit2  13452  uzsplit  13499  fzospliti  13594  fzouzsplit  13597  discr1  14146  faclbnd  14197  faclbnd4lem1  14200  faclbnd4lem4  14203  dvdslelem  16220  dvdsprmpweqle  16798  icccmplem2  24710  icccmp  24712  bcmono  27186  bpos1lem  27191  bposlem3  27195  bpos  27202  fzsplit3  32737  submateq  33782  lzunuz  42751  jm2.24  42946  fzuntgd  43441  iccpartnel  47432  bgoldbtbnd  47803  tgoldbach  47811  reorelicc  48705
  Copyright terms: Public domain W3C validator