Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lelttric | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
lelttric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.1 894 | . 2 ⊢ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴) | |
2 | lenlt 11053 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
3 | 2 | orbi1d 914 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴))) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-xr 11013 df-le 11015 |
This theorem is referenced by: ltlecasei 11083 fzsplit2 13281 uzsplit 13328 fzospliti 13419 fzouzsplit 13422 discr1 13954 faclbnd 14004 faclbnd4lem1 14007 faclbnd4lem4 14010 dvdslelem 16018 dvdsprmpweqle 16587 icccmplem2 23986 icccmp 23988 bcmono 26425 bpos1lem 26430 bposlem3 26434 bpos 26441 fzsplit3 31115 submateq 31759 lzunuz 40590 jm2.24 40785 fzuntgd 41065 iccpartnel 44890 bgoldbtbnd 45261 tgoldbach 45269 reorelicc 46056 |
Copyright terms: Public domain | W3C validator |