| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lelttric | Structured version Visualization version GIF version | ||
| Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| lelttric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . 2 ⊢ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴) | |
| 2 | lenlt 11191 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 2 | orbi1d 916 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴))) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-xr 11150 df-le 11152 |
| This theorem is referenced by: ltlecasei 11221 fzsplit2 13449 uzsplit 13496 fzospliti 13591 fzouzsplit 13594 discr1 14146 faclbnd 14197 faclbnd4lem1 14200 faclbnd4lem4 14203 dvdslelem 16220 dvdsprmpweqle 16798 icccmplem2 24739 icccmp 24741 bcmono 27215 bpos1lem 27220 bposlem3 27224 bpos 27231 fzsplit3 32776 submateq 33822 lzunuz 42860 jm2.24 43055 fzuntgd 43550 iccpartnel 47537 bgoldbtbnd 47908 tgoldbach 47916 reorelicc 48810 |
| Copyright terms: Public domain | W3C validator |