| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lelttric | Structured version Visualization version GIF version | ||
| Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| lelttric | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . 2 ⊢ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴) | |
| 2 | lenlt 11228 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 3 | 2 | orbi1d 916 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴 ∨ 𝐵 < 𝐴))) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: ltlecasei 11258 fzsplit2 13486 uzsplit 13533 fzospliti 13628 fzouzsplit 13631 discr1 14180 faclbnd 14231 faclbnd4lem1 14234 faclbnd4lem4 14237 dvdslelem 16255 dvdsprmpweqle 16833 icccmplem2 24745 icccmp 24747 bcmono 27221 bpos1lem 27226 bposlem3 27230 bpos 27237 fzsplit3 32766 submateq 33792 lzunuz 42749 jm2.24 42945 fzuntgd 43440 iccpartnel 47432 bgoldbtbnd 47803 tgoldbach 47811 reorelicc 48692 |
| Copyright terms: Public domain | W3C validator |