Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlelttric Structured version   Visualization version   GIF version

Theorem xrlelttric 30389
 Description: Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
Assertion
Ref Expression
xrlelttric ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem xrlelttric
StepHypRef Expression
1 pm2.1 892 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 xrlenlt 10695 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 912 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 259 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∨ wo 843   ∈ wcel 2107   class class class wbr 5063  ℝ*cxr 10663   < clt 10664   ≤ cle 10665 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-opab 5126  df-xp 5560  df-cnv 5562  df-le 10670 This theorem is referenced by:  difioo  30418  esumpcvgval  31223
 Copyright terms: Public domain W3C validator