Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlelttric Structured version   Visualization version   GIF version

Theorem xrlelttric 32759
Description: Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
Assertion
Ref Expression
xrlelttric ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem xrlelttric
StepHypRef Expression
1 pm2.1 895 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 xrlenlt 11355 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 915 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 258 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wcel 2108   class class class wbr 5166  *cxr 11323   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-le 11330
This theorem is referenced by:  difioo  32787  esumpcvgval  34042
  Copyright terms: Public domain W3C validator