Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrlelttric Structured version   Visualization version   GIF version

Theorem xrlelttric 32729
Description: Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
Assertion
Ref Expression
xrlelttric ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))

Proof of Theorem xrlelttric
StepHypRef Expression
1 pm2.1 896 . 2 𝐵 < 𝐴𝐵 < 𝐴)
2 xrlenlt 11300 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
32orbi1d 916 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐴) ↔ (¬ 𝐵 < 𝐴𝐵 < 𝐴)))
41, 3mpbiri 258 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2108   class class class wbr 5119  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-le 11275
This theorem is referenced by:  difioo  32759  esumpcvgval  34109
  Copyright terms: Public domain W3C validator