Proof of Theorem fvmptrabdm
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvmptrabdm.v | . 2
⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) | 
| 2 |  | pm2.1 896 | . 2
⊢ (¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) | 
| 3 |  | imor 853 | . . 3
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) | 
| 4 |  | ordir 1008 | . . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹))) | 
| 5 |  | ndmfv 6940 | . . . . . . 7
⊢ (¬
𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | 
| 6 |  | ndmfv 6940 | . . . . . . . . 9
⊢ (¬
𝑌 ∈ dom 𝐺 → (𝐺‘𝑌) = ∅) | 
| 7 | 6 | rabeqdv 3451 | . . . . . . . 8
⊢ (¬
𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) | 
| 8 |  | rab0 4385 | . . . . . . . 8
⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ | 
| 9 | 7, 8 | eqtr2di 2793 | . . . . . . 7
⊢ (¬
𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 10 | 5, 9 | sylan9eq 2796 | . . . . . 6
⊢ ((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 11 |  | fvmptrabdm.f | . . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) | 
| 12 |  | fvmptrabdm.r | . . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) | 
| 13 | 12 | rabbidv 3443 | . . . . . . 7
⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 14 | 11 | dmmpt 6259 | . . . . . . . . . 10
⊢ dom 𝐹 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} | 
| 15 |  | rabid2 3469 | . . . . . . . . . . 11
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥 ∈ 𝑉 {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) | 
| 16 |  | fvex 6918 | . . . . . . . . . . . . 13
⊢ (𝐺‘𝑌) ∈ V | 
| 17 | 16 | rabex 5338 | . . . . . . . . . . . 12
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V | 
| 18 | 17 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) | 
| 19 | 15, 18 | mprgbir 3067 | . . . . . . . . . 10
⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} | 
| 20 | 14, 19 | eqtr4i 2767 | . . . . . . . . 9
⊢ dom 𝐹 = 𝑉 | 
| 21 | 20 | eleq2i 2832 | . . . . . . . 8
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝑉) | 
| 22 | 21 | biimpi 216 | . . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) | 
| 23 | 16 | rabex 5338 | . . . . . . . 8
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V | 
| 24 | 23 | a1i 11 | . . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V) | 
| 25 | 11, 13, 22, 24 | fvmptd3 7038 | . . . . . 6
⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 26 | 10, 25 | jaoi 857 | . . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 27 | 4, 26 | sylbir 235 | . . . 4
⊢ (((¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) | 
| 28 | 27 | expcom 413 | . . 3
⊢ ((¬
𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) | 
| 29 | 3, 28 | sylbi 217 | . 2
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) | 
| 30 | 1, 2, 29 | mp2 9 | 1
⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} |