Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptrabdm Structured version   Visualization version   GIF version

Theorem fvmptrabdm 43849
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 6776. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.)
Hypotheses
Ref Expression
fvmptrabdm.f 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
fvmptrabdm.r (𝑥 = 𝑋 → (𝜑𝜓))
fvmptrabdm.v (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
Assertion
Ref Expression
fvmptrabdm (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑦)   𝑉(𝑦)

Proof of Theorem fvmptrabdm
StepHypRef Expression
1 fvmptrabdm.v . 2 (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
2 pm2.1 894 . 2 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹)
3 imor 850 . . 3 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹))
4 ordir 1004 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)))
5 ndmfv 6675 . . . . . . 7 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
6 ndmfv 6675 . . . . . . . . 9 𝑌 ∈ dom 𝐺 → (𝐺𝑌) = ∅)
76rabeqdv 3432 . . . . . . . 8 𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
8 rab0 4291 . . . . . . . 8 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
97, 8eqtr2di 2850 . . . . . . 7 𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
105, 9sylan9eq 2853 . . . . . 6 ((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
11 fvmptrabdm.f . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
12 fvmptrabdm.r . . . . . . . 8 (𝑥 = 𝑋 → (𝜑𝜓))
1312rabbidv 3427 . . . . . . 7 (𝑥 = 𝑋 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
1411dmmpt 6061 . . . . . . . . . 10 dom 𝐹 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
15 rabid2 3334 . . . . . . . . . . 11 (𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥𝑉 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
16 fvex 6658 . . . . . . . . . . . . 13 (𝐺𝑌) ∈ V
1716rabex 5199 . . . . . . . . . . . 12 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝑥𝑉 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
1915, 18mprgbir 3121 . . . . . . . . . 10 𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
2014, 19eqtr4i 2824 . . . . . . . . 9 dom 𝐹 = 𝑉
2120eleq2i 2881 . . . . . . . 8 (𝑋 ∈ dom 𝐹𝑋𝑉)
2221biimpi 219 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋𝑉)
2316rabex 5199 . . . . . . . 8 {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V
2423a1i 11 . . . . . . 7 (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V)
2511, 13, 22, 24fvmptd3 6768 . . . . . 6 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2610, 25jaoi 854 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
274, 26sylbir 238 . . . 4 (((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2827expcom 417 . . 3 ((¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
293, 28sylbi 220 . 2 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
301, 2, 29mp2 9 1 (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  c0 4243  cmpt 5110  dom cdm 5519  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator