Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptrabdm Structured version   Visualization version   GIF version

Theorem fvmptrabdm 47258
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 7015. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.)
Hypotheses
Ref Expression
fvmptrabdm.f 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
fvmptrabdm.r (𝑥 = 𝑋 → (𝜑𝜓))
fvmptrabdm.v (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
Assertion
Ref Expression
fvmptrabdm (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑦)   𝑉(𝑦)

Proof of Theorem fvmptrabdm
StepHypRef Expression
1 fvmptrabdm.v . 2 (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
2 pm2.1 896 . 2 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹)
3 imor 853 . . 3 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹))
4 ordir 1008 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)))
5 ndmfv 6908 . . . . . . 7 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
6 ndmfv 6908 . . . . . . . . 9 𝑌 ∈ dom 𝐺 → (𝐺𝑌) = ∅)
76rabeqdv 3429 . . . . . . . 8 𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
8 rab0 4359 . . . . . . . 8 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
97, 8eqtr2di 2786 . . . . . . 7 𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
105, 9sylan9eq 2789 . . . . . 6 ((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
11 fvmptrabdm.f . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
12 fvmptrabdm.r . . . . . . . 8 (𝑥 = 𝑋 → (𝜑𝜓))
1312rabbidv 3421 . . . . . . 7 (𝑥 = 𝑋 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
1411dmmpt 6227 . . . . . . . . . 10 dom 𝐹 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
15 rabid2 3447 . . . . . . . . . . 11 (𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥𝑉 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
16 fvex 6886 . . . . . . . . . . . . 13 (𝐺𝑌) ∈ V
1716rabex 5307 . . . . . . . . . . . 12 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝑥𝑉 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
1915, 18mprgbir 3057 . . . . . . . . . 10 𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
2014, 19eqtr4i 2760 . . . . . . . . 9 dom 𝐹 = 𝑉
2120eleq2i 2825 . . . . . . . 8 (𝑋 ∈ dom 𝐹𝑋𝑉)
2221biimpi 216 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋𝑉)
2316rabex 5307 . . . . . . . 8 {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V
2423a1i 11 . . . . . . 7 (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V)
2511, 13, 22, 24fvmptd3 7006 . . . . . 6 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2610, 25jaoi 857 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
274, 26sylbir 235 . . . 4 (((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2827expcom 413 . . 3 ((¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
293, 28sylbi 217 . 2 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
301, 2, 29mp2 9 1 (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  {crab 3413  Vcvv 3457  c0 4306  cmpt 5199  dom cdm 5652  cfv 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fv 6536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator