Proof of Theorem fvmptrabdm
| Step | Hyp | Ref
| Expression |
| 1 | | fvmptrabdm.v |
. 2
⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) |
| 2 | | pm2.1 896 |
. 2
⊢ (¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) |
| 3 | | imor 853 |
. . 3
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) |
| 4 | | ordir 1008 |
. . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹))) |
| 5 | | ndmfv 6916 |
. . . . . . 7
⊢ (¬
𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) |
| 6 | | ndmfv 6916 |
. . . . . . . . 9
⊢ (¬
𝑌 ∈ dom 𝐺 → (𝐺‘𝑌) = ∅) |
| 7 | 6 | rabeqdv 3436 |
. . . . . . . 8
⊢ (¬
𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓}) |
| 8 | | rab0 4366 |
. . . . . . . 8
⊢ {𝑦 ∈ ∅ ∣ 𝜓} = ∅ |
| 9 | 7, 8 | eqtr2di 2788 |
. . . . . . 7
⊢ (¬
𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 10 | 5, 9 | sylan9eq 2791 |
. . . . . 6
⊢ ((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 11 | | fvmptrabdm.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) |
| 12 | | fvmptrabdm.r |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) |
| 13 | 12 | rabbidv 3428 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 14 | 11 | dmmpt 6234 |
. . . . . . . . . 10
⊢ dom 𝐹 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} |
| 15 | | rabid2 3454 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥 ∈ 𝑉 {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) |
| 16 | | fvex 6894 |
. . . . . . . . . . . . 13
⊢ (𝐺‘𝑌) ∈ V |
| 17 | 16 | rabex 5314 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑉 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V) |
| 19 | 15, 18 | mprgbir 3059 |
. . . . . . . . . 10
⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑} ∈ V} |
| 20 | 14, 19 | eqtr4i 2762 |
. . . . . . . . 9
⊢ dom 𝐹 = 𝑉 |
| 21 | 20 | eleq2i 2827 |
. . . . . . . 8
⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝑉) |
| 22 | 21 | biimpi 216 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
| 23 | 16 | rabex 5314 |
. . . . . . . 8
⊢ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} ∈ V) |
| 25 | 11, 13, 22, 24 | fvmptd3 7014 |
. . . . . 6
⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 26 | 10, 25 | jaoi 857 |
. . . . 5
⊢ (((¬
𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 27 | 4, 26 | sylbir 235 |
. . . 4
⊢ (((¬
𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹)) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓}) |
| 28 | 27 | expcom 413 |
. . 3
⊢ ((¬
𝑌 ∈ dom 𝐺 ∨ 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) |
| 29 | 3, 28 | sylbi 217 |
. 2
⊢ ((𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹 ∨ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓})) |
| 30 | 1, 2, 29 | mp2 9 |
1
⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} |