Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptrabdm Structured version   Visualization version   GIF version

Theorem fvmptrabdm 47294
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 7000. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.)
Hypotheses
Ref Expression
fvmptrabdm.f 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
fvmptrabdm.r (𝑥 = 𝑋 → (𝜑𝜓))
fvmptrabdm.v (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
Assertion
Ref Expression
fvmptrabdm (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑦)   𝑉(𝑦)

Proof of Theorem fvmptrabdm
StepHypRef Expression
1 fvmptrabdm.v . 2 (𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)
2 pm2.1 896 . 2 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹)
3 imor 853 . . 3 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) ↔ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹))
4 ordir 1008 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) ↔ ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)))
5 ndmfv 6893 . . . . . . 7 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
6 ndmfv 6893 . . . . . . . . 9 𝑌 ∈ dom 𝐺 → (𝐺𝑌) = ∅)
76rabeqdv 3421 . . . . . . . 8 𝑌 ∈ dom 𝐺 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} = {𝑦 ∈ ∅ ∣ 𝜓})
8 rab0 4349 . . . . . . . 8 {𝑦 ∈ ∅ ∣ 𝜓} = ∅
97, 8eqtr2di 2781 . . . . . . 7 𝑌 ∈ dom 𝐺 → ∅ = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
105, 9sylan9eq 2784 . . . . . 6 ((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
11 fvmptrabdm.f . . . . . . 7 𝐹 = (𝑥𝑉 ↦ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑})
12 fvmptrabdm.r . . . . . . . 8 (𝑥 = 𝑋 → (𝜑𝜓))
1312rabbidv 3413 . . . . . . 7 (𝑥 = 𝑋 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
1411dmmpt 6213 . . . . . . . . . 10 dom 𝐹 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
15 rabid2 3439 . . . . . . . . . . 11 (𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V} ↔ ∀𝑥𝑉 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
16 fvex 6871 . . . . . . . . . . . . 13 (𝐺𝑌) ∈ V
1716rabex 5294 . . . . . . . . . . . 12 {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝑥𝑉 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V)
1915, 18mprgbir 3051 . . . . . . . . . 10 𝑉 = {𝑥𝑉 ∣ {𝑦 ∈ (𝐺𝑌) ∣ 𝜑} ∈ V}
2014, 19eqtr4i 2755 . . . . . . . . 9 dom 𝐹 = 𝑉
2120eleq2i 2820 . . . . . . . 8 (𝑋 ∈ dom 𝐹𝑋𝑉)
2221biimpi 216 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋𝑉)
2316rabex 5294 . . . . . . . 8 {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V
2423a1i 11 . . . . . . 7 (𝑋 ∈ dom 𝐹 → {𝑦 ∈ (𝐺𝑌) ∣ 𝜓} ∈ V)
2511, 13, 22, 24fvmptd3 6991 . . . . . 6 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2610, 25jaoi 857 . . . . 5 (((¬ 𝑋 ∈ dom 𝐹 ∧ ¬ 𝑌 ∈ dom 𝐺) ∨ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
274, 26sylbir 235 . . . 4 (((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) ∧ (¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹)) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓})
2827expcom 413 . . 3 ((¬ 𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
293, 28sylbi 217 . 2 ((𝑌 ∈ dom 𝐺𝑋 ∈ dom 𝐹) → ((¬ 𝑋 ∈ dom 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}))
301, 2, 29mp2 9 1 (𝐹𝑋) = {𝑦 ∈ (𝐺𝑌) ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  c0 4296  cmpt 5188  dom cdm 5638  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator