Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Visualization version   GIF version

Theorem en3lpVD 42354
Description: Virtual deduction proof of en3lp 9302. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lpVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 893 . . 3 (¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
2 df-ne 2943 . . . . 5 ({𝐴, 𝐵, 𝐶} ≠ ∅ ↔ ¬ {𝐴, 𝐵, 𝐶} = ∅)
32bicomi 223 . . . 4 (¬ {𝐴, 𝐵, 𝐶} = ∅ ↔ {𝐴, 𝐵, 𝐶} ≠ ∅)
43orbi1i 910 . . 3 ((¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) ↔ ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅))
51, 4mpbi 229 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
6 zfregs2 9422 . . . 4 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
7 en3lplem2VD 42353 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
87alrimiv 1931 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
9 df-ral 3068 . . . . . 6 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) ↔ ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
108, 9sylibr 233 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1110con3i 154 . . . 4 (¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
126, 11syl 17 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
13 idn1 42083 . . . . . . 7 (   {𝐴, 𝐵, 𝐶} = ∅   ▶   {𝐴, 𝐵, 𝐶} = ∅   )
14 noel 4261 . . . . . . 7 ¬ 𝐶 ∈ ∅
15 eleq2 2827 . . . . . . . . 9 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
1615notbid 317 . . . . . . . 8 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ ¬ 𝐶 ∈ ∅))
1716biimprd 247 . . . . . . 7 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1813, 14, 17e10 42203 . . . . . 6 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
19 tpid3g 4705 . . . . . . 7 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
2019con3i 154 . . . . . 6 𝐶 ∈ {𝐴, 𝐵, 𝐶} → ¬ 𝐶𝐴)
2118, 20e1a 42136 . . . . 5 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶𝐴   )
22 simp3 1136 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2322con3i 154 . . . . 5 𝐶𝐴 → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2421, 23e1a 42136 . . . 4 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2524in1 42080 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2612, 25jaoi 853 . 2 (({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
275, 26ax-mp 5 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  c0 4253  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-vd1 42079  df-vd2 42087  df-vd3 42099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator