Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval2 Structured version   Visualization version   GIF version

 Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
maducoeval2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙   𝐵,𝑘,𝑙   0 ,𝑘   1 ,𝑘
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑙)   𝐽(𝑘,𝑙)   0 (𝑙)

Dummy variables 𝑛 𝑟 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2900 . . . . . . . 8 (𝑚 = ∅ → (𝑘𝑚𝑘 ∈ ∅))
21ifbid 4462 . . . . . . 7 (𝑚 = ∅ → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
32ifeq2d 4459 . . . . . 6 (𝑚 = ∅ → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
43mpoeq3dv 7207 . . . . 5 (𝑚 = ∅ → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
54fveq2d 6647 . . . 4 (𝑚 = ∅ → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
65eqeq2d 2832 . . 3 (𝑚 = ∅ → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
7 eleq2 2900 . . . . . . . 8 (𝑚 = 𝑛 → (𝑘𝑚𝑘𝑛))
87ifbid 4462 . . . . . . 7 (𝑚 = 𝑛 → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
98ifeq2d 4459 . . . . . 6 (𝑚 = 𝑛 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
109mpoeq3dv 7207 . . . . 5 (𝑚 = 𝑛 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
1110fveq2d 6647 . . . 4 (𝑚 = 𝑛 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
1211eqeq2d 2832 . . 3 (𝑚 = 𝑛 → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
13 eleq2 2900 . . . . . . . 8 (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘𝑚𝑘 ∈ (𝑛 ∪ {𝑟})))
1413ifbid 4462 . . . . . . 7 (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
1514ifeq2d 4459 . . . . . 6 (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
1615mpoeq3dv 7207 . . . . 5 (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
1716fveq2d 6647 . . . 4 (𝑚 = (𝑛 ∪ {𝑟}) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
1817eqeq2d 2832 . . 3 (𝑚 = (𝑛 ∪ {𝑟}) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
19 eleq2 2900 . . . . . . . 8 (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘𝑚𝑘 ∈ (𝑁 ∖ {𝐻})))
2019ifbid 4462 . . . . . . 7 (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
2120ifeq2d 4459 . . . . . 6 (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
2221mpoeq3dv 7207 . . . . 5 (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
2322fveq2d 6647 . . . 4 (𝑚 = (𝑁 ∖ {𝐻}) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
2423eqeq2d 2832 . . 3 (𝑚 = (𝑁 ∖ {𝐻}) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
25 madufval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
26 madufval.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
27 madufval.j . . . . . 6 𝐽 = (𝑁 maAdju 𝑅)
28 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
29 madufval.o . . . . . 6 1 = (1r𝑅)
30 madufval.z . . . . . 6 0 = (0g𝑅)
3125, 26, 27, 28, 29, 30maducoeval 21224 . . . . 5 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
32313adant1l 1173 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
33 noel 4270 . . . . . . . 8 ¬ 𝑘 ∈ ∅
34 iffalse 4449 . . . . . . . 8 𝑘 ∈ ∅ → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
3533, 34mp1i 13 . . . . . . 7 ((𝑘𝑁𝑙𝑁) → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
3635ifeq2d 4459 . . . . . 6 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
3736mpoeq3ia 7206 . . . . 5 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
3837fveq2i 6646 . . . 4 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
3932, 38syl6eqr 2874 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
40 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
41 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
42 eqid 2821 . . . . . . 7 (.r𝑅) = (.r𝑅)
43 simpl1l 1221 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑅 ∈ CRing)
44 simp1r 1195 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑀𝐵)
4525, 28matrcl 20997 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4645simpld 498 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
4744, 46syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑁 ∈ Fin)
4847adantr 484 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑁 ∈ Fin)
49 simp1l 1194 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → 𝑅 ∈ CRing)
5049ad2antrr 725 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ CRing)
51 crngring 19287 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5250, 51syl 17 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
5340, 30ring0cl 19298 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
5452, 53syl 17 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 0 ∈ (Base‘𝑅))
55 simpl1r 1222 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀𝐵)
5625, 40, 28matbas2i 21007 . . . . . . . . . . 11 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
57 elmapi 8403 . . . . . . . . . . 11 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
5855, 56, 573syl 18 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
5958adantr 484 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
60 eldifi 4079 . . . . . . . . . . . 12 (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → 𝑟 ∈ (𝑁 ∖ {𝐻}))
6160ad2antll 728 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ (𝑁 ∖ {𝐻}))
6261eldifad 3922 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟𝑁)
6362adantr 484 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑟𝑁)
64 simpr 488 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑙𝑁)
6559, 63, 64fovrnd 7295 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (𝑟𝑀𝑙) ∈ (Base‘𝑅))
6654, 65ifcld 4485 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) ∈ (Base‘𝑅))
6740, 29ringidcl 19297 . . . . . . . . 9 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
6852, 67syl 17 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 1 ∈ (Base‘𝑅))
6968, 54ifcld 4485 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅))
70543adant2 1128 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → 0 ∈ (Base‘𝑅))
7158fovrnda 7294 . . . . . . . . . 10 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ (𝑘𝑁𝑙𝑁)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
72713impb 1112 . . . . . . . . 9 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
7370, 72ifcld 4485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
7473, 72ifcld 4485 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
75 simpl2 1189 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐼𝑁)
7658, 62, 75fovrnd 7295 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑟𝑀𝐼) ∈ (Base‘𝑅))
77 simpl3 1190 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐻𝑁)
78 eldifsni 4695 . . . . . . . 8 (𝑟 ∈ (𝑁 ∖ {𝐻}) → 𝑟𝐻)
7961, 78syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟𝐻)
8026, 40, 41, 42, 43, 48, 66, 69, 74, 76, 62, 77, 79mdetero 21195 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
81 ifnot 4490 . . . . . . . . . . . . . . . . 17 if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))
8281eqcomi 2830 . . . . . . . . . . . . . . . 16 if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )
8382a1i 11 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
84 ovif2 7226 . . . . . . . . . . . . . . . 16 ((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 ))
8576adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (𝑟𝑀𝐼) ∈ (Base‘𝑅))
8640, 42, 29ringridm 19301 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
8752, 85, 86syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
8887adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝐼))
89 oveq2 7138 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝐼 → (𝑟𝑀𝑙) = (𝑟𝑀𝐼))
9089adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → (𝑟𝑀𝑙) = (𝑟𝑀𝐼))
9188, 90eqtr4d 2859 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r𝑅) 1 ) = (𝑟𝑀𝑙))
9291ifeq1da 4470 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r𝑅) 0 )))
9340, 42, 30ringrz 19317 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r𝑅) 0 ) = 0 )
9452, 85, 93syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅) 0 ) = 0 )
9594ifeq2d 4459 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9692, 95eqtrd 2856 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r𝑅) 1 ), ((𝑟𝑀𝐼)(.r𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9784, 96syl5eq 2868 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))
9883, 97oveq12d 7148 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
99 ringmnd 19285 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10052, 99syl 17 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → 𝑅 ∈ Mnd)
101 id 22 . . . . . . . . . . . . . . . . 17 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼)
102 imnan 403 . . . . . . . . . . . . . . . . 17 ((¬ 𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) ↔ ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼))
103101, 102mpbi 233 . . . . . . . . . . . . . . . 16 ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼)
104103a1i 11 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼))
10540, 30, 41mndifsplit 21221 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Mnd ∧ (𝑟𝑀𝑙) ∈ (Base‘𝑅) ∧ ¬ (¬ 𝑙 = 𝐼𝑙 = 𝐼)) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
106100, 65, 104, 105syl3anc 1368 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )(+g𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )))
107 pm2.1 894 . . . . . . . . . . . . . . 15 𝑙 = 𝐼𝑙 = 𝐼)
108 iftrue 4446 . . . . . . . . . . . . . . 15 ((¬ 𝑙 = 𝐼𝑙 = 𝐼) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙))
109107, 108mp1i 13 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → if((¬ 𝑙 = 𝐼𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙))
11098, 106, 1093eqtr2d 2862 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))
1111103adant2 1128 . . . . . . . . . . . 12 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))
112 oveq1 7137 . . . . . . . . . . . . 13 (𝑘 = 𝑟 → (𝑘𝑀𝑙) = (𝑟𝑀𝑙))
113112eqeq2d 2832 . . . . . . . . . . . 12 (𝑘 = 𝑟 → ((if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙) ↔ (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)))
114111, 113syl5ibrcom 250 . . . . . . . . . . 11 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙)))
115114imp 410 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙))
116 iftrue 4446 . . . . . . . . . . 11 (𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))))
117116adantl 485 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))))
11879neneqd 3012 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 = 𝐻)
1191183ad2ant1 1130 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → ¬ 𝑟 = 𝐻)
120 eqeq1 2825 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟 → (𝑘 = 𝐻𝑟 = 𝐻))
121120notbid 321 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → (¬ 𝑘 = 𝐻 ↔ ¬ 𝑟 = 𝐻))
122119, 121syl5ibrcom 250 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 = 𝐻))
123122imp 410 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 = 𝐻)
124123iffalsed 4451 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
125 eldifn 4080 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → ¬ 𝑟𝑛)
126125ad2antll 728 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟𝑛)
1271263ad2ant1 1130 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → ¬ 𝑟𝑛)
128 eleq1w 2894 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟 → (𝑘𝑛𝑟𝑛))
129128notbid 321 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → (¬ 𝑘𝑛 ↔ ¬ 𝑟𝑛))
130127, 129syl5ibrcom 250 . . . . . . . . . . . . 13 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑟 → ¬ 𝑘𝑛))
131130imp 410 . . . . . . . . . . . 12 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘𝑛)
132131iffalsed 4451 . . . . . . . . . . 11 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙))
133124, 132eqtrd 2856 . . . . . . . . . 10 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = (𝑘𝑀𝑙))
134115, 117, 1333eqtr4d 2866 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
135 iffalse 4449 . . . . . . . . . 10 𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
136135adantl 485 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
137134, 136pm2.61dan 812 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
138137mpoeq3dva 7205 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
139138fveq2d 6647 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g𝑅)((𝑟𝑀𝐼)(.r𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
140 neeq2 3070 . . . . . . . . . . . . . . 15 (𝑘 = 𝐻 → (𝑟𝑘𝑟𝐻))
141140biimparc 483 . . . . . . . . . . . . . 14 ((𝑟𝐻𝑘 = 𝐻) → 𝑟𝑘)
142141necomd 3062 . . . . . . . . . . . . 13 ((𝑟𝐻𝑘 = 𝐻) → 𝑘𝑟)
143142neneqd 3012 . . . . . . . . . . . 12 ((𝑟𝐻𝑘 = 𝐻) → ¬ 𝑘 = 𝑟)
144143iffalsed 4451 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, 1 , 0 ))
145 iftrue 4446 . . . . . . . . . . . . 13 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
146145adantl 485 . . . . . . . . . . . 12 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
147146ifeq2d 4459 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )))
148 iftrue 4446 . . . . . . . . . . . 12 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
149148adantl 485 . . . . . . . . . . 11 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
150144, 147, 1493eqtr4d 2866 . . . . . . . . . 10 ((𝑟𝐻𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
151112ifeq2d 4459 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)))
152 vsnid 4575 . . . . . . . . . . . . . . . . 17 𝑟 ∈ {𝑟}
153 elun2 4129 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ {𝑟} → 𝑟 ∈ (𝑛 ∪ {𝑟}))
154152, 153ax-mp 5 . . . . . . . . . . . . . . . 16 𝑟 ∈ (𝑛 ∪ {𝑟})
155 eleq1w 2894 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑟 → (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ 𝑟 ∈ (𝑛 ∪ {𝑟})))
156154, 155mpbiri 261 . . . . . . . . . . . . . . 15 (𝑘 = 𝑟𝑘 ∈ (𝑛 ∪ {𝑟}))
157156iftrued 4448 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)))
158 iftrue 4446 . . . . . . . . . . . . . 14 (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)))
159151, 157, 1583eqtr4rd 2867 . . . . . . . . . . . . 13 (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
160159adantl 485 . . . . . . . . . . . 12 (((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
161 iffalse 4449 . . . . . . . . . . . . . 14 𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
162 orc 864 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (𝑘𝑛𝑘 = 𝑟))
163 orel2 888 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑟 → ((𝑘𝑛𝑘 = 𝑟) → 𝑘𝑛))
164162, 163impbid2 229 . . . . . . . . . . . . . . . 16 𝑘 = 𝑟 → (𝑘𝑛 ↔ (𝑘𝑛𝑘 = 𝑟)))
165 elun 4101 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ (𝑘𝑛𝑘 ∈ {𝑟}))
166 velsn 4556 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑟} ↔ 𝑘 = 𝑟)
167166orbi2i 910 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛𝑘 ∈ {𝑟}) ↔ (𝑘𝑛𝑘 = 𝑟))
168165, 167bitr2i 279 . . . . . . . . . . . . . . . 16 ((𝑘𝑛𝑘 = 𝑟) ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))
169164, 168syl6bb 290 . . . . . . . . . . . . . . 15 𝑘 = 𝑟 → (𝑘𝑛𝑘 ∈ (𝑛 ∪ {𝑟})))
170169ifbid 4462 . . . . . . . . . . . . . 14 𝑘 = 𝑟 → if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
171161, 170eqtrd 2856 . . . . . . . . . . . . 13 𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
172171adantl 485 . . . . . . . . . . . 12 (((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
173160, 172pm2.61dan 812 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
174 iffalse 4449 . . . . . . . . . . . . 13 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
175174ifeq2d 4459 . . . . . . . . . . . 12 𝑘 = 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
176175adantl 485 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
177 iffalse 4449 . . . . . . . . . . . 12 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
178177adantl 485 . . . . . . . . . . 11 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
179173, 176, 1783eqtr4d 2866 . . . . . . . . . 10 ((𝑟𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
180150, 179pm2.61dan 812 . . . . . . . . 9 (𝑟𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))
181180mpoeq3dv 7207 . . . . . . . 8 (𝑟𝐻 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))
182181fveq2d 6647 . . . . . . 7 (𝑟𝐻 → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
18379, 182syl 17 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
18480, 139, 1833eqtr3d 2864 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
185184eqeq2d 2832 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
186185biimpd 232 . . 3 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))))
187 difss 4084 . . . 4 (𝑁 ∖ {𝐻}) ⊆ 𝑁
188 ssfi 8714 . . . 4 ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝐻}) ⊆ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin)
18947, 187, 188sylancl 589 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin)
1906, 12, 18, 24, 39, 186, 189findcard2d 8736 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))
191 iba 531 . . . . . . . 8 (𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑙 = 𝐼𝑘 = 𝐻)))
192191ifbid 4462 . . . . . . 7 (𝑘 = 𝐻 → if(𝑙 = 𝐼, 1 , 0 ) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
193 iftrue 4446 . . . . . . 7 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 ))
194 iftrue 4446 . . . . . . . 8 ((𝑘 = 𝐻𝑙 = 𝐼) → if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
195194orcs 872 . . . . . . 7 (𝑘 = 𝐻 → if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
196192, 193, 1953eqtr4d 2866 . . . . . 6 (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
197196adantl 485 . . . . 5 (((𝑘𝑁𝑙𝑁) ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
198 iffalse 4449 . . . . . . 7 𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
199198adantl 485 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))
200 neqne 3015 . . . . . . . . . 10 𝑘 = 𝐻𝑘𝐻)
201200anim2i 619 . . . . . . . . 9 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐻) → (𝑘𝑁𝑘𝐻))
202201adantlr 714 . . . . . . . 8 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → (𝑘𝑁𝑘𝐻))
203 eldifsn 4692 . . . . . . . 8 (𝑘 ∈ (𝑁 ∖ {𝐻}) ↔ (𝑘𝑁𝑘𝐻))
204202, 203sylibr 237 . . . . . . 7 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → 𝑘 ∈ (𝑁 ∖ {𝐻}))
205204iftrued 4448 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)))
206 biorf 934 . . . . . . . 8 𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑘 = 𝐻𝑙 = 𝐼)))
207 id 22 . . . . . . . . . . 11 𝑘 = 𝐻 → ¬ 𝑘 = 𝐻)
208207intnand 492 . . . . . . . . . 10 𝑘 = 𝐻 → ¬ (𝑙 = 𝐼𝑘 = 𝐻))
209208iffalsed 4451 . . . . . . . . 9 𝑘 = 𝐻 → if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ) = 0 )
210209eqcomd 2827 . . . . . . . 8 𝑘 = 𝐻0 = if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ))
211206, 210ifbieq1d 4463 . . . . . . 7 𝑘 = 𝐻 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
212211adantl 485 . . . . . 6 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
213199, 205, 2123eqtrd 2860 . . . . 5 (((𝑘𝑁𝑙𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
214197, 213pm2.61dan 812 . . . 4 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
215214mpoeq3ia 7206 . . 3 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))
216215fveq2i 6646 . 2 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))
217190, 216syl6eq 2872 1 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if((𝑘 = 𝐻𝑙 = 𝐼), if((𝑙 = 𝐼𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))))