Step | Hyp | Ref
| Expression |
1 | | eleq2 2828 |
. . . . . . . 8
⊢ (𝑚 = ∅ → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ ∅)) |
2 | 1 | ifbid 4483 |
. . . . . . 7
⊢ (𝑚 = ∅ → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
3 | 2 | ifeq2d 4480 |
. . . . . 6
⊢ (𝑚 = ∅ → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
4 | 3 | mpoeq3dv 7363 |
. . . . 5
⊢ (𝑚 = ∅ → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
5 | 4 | fveq2d 6787 |
. . . 4
⊢ (𝑚 = ∅ → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
6 | 5 | eqeq2d 2750 |
. . 3
⊢ (𝑚 = ∅ → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
7 | | eleq2 2828 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ 𝑛)) |
8 | 7 | ifbid 4483 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
9 | 8 | ifeq2d 4480 |
. . . . . 6
⊢ (𝑚 = 𝑛 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
10 | 9 | mpoeq3dv 7363 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
11 | 10 | fveq2d 6787 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
12 | 11 | eqeq2d 2750 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
13 | | eleq2 2828 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))) |
14 | 13 | ifbid 4483 |
. . . . . . 7
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
15 | 14 | ifeq2d 4480 |
. . . . . 6
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
16 | 15 | mpoeq3dv 7363 |
. . . . 5
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
17 | 16 | fveq2d 6787 |
. . . 4
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
18 | 17 | eqeq2d 2750 |
. . 3
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
19 | | eleq2 2828 |
. . . . . . . 8
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ (𝑁 ∖ {𝐻}))) |
20 | 19 | ifbid 4483 |
. . . . . . 7
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
21 | 20 | ifeq2d 4480 |
. . . . . 6
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
22 | 21 | mpoeq3dv 7363 |
. . . . 5
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
23 | 22 | fveq2d 6787 |
. . . 4
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
24 | 23 | eqeq2d 2750 |
. . 3
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
25 | | madufval.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
26 | | madufval.d |
. . . . . 6
⊢ 𝐷 = (𝑁 maDet 𝑅) |
27 | | madufval.j |
. . . . . 6
⊢ 𝐽 = (𝑁 maAdju 𝑅) |
28 | | madufval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
29 | | madufval.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
30 | | madufval.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
31 | 25, 26, 27, 28, 29, 30 | maducoeval 21797 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
32 | 31 | 3adant1l 1175 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
33 | | noel 4265 |
. . . . . . . 8
⊢ ¬
𝑘 ∈
∅ |
34 | | iffalse 4469 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ ∅ →
if(𝑘 ∈ ∅,
if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
35 | 33, 34 | mp1i 13 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
36 | 35 | ifeq2d 4480 |
. . . . . 6
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
37 | 36 | mpoeq3ia 7362 |
. . . . 5
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
38 | 37 | fveq2i 6786 |
. . . 4
⊢ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) |
39 | 32, 38 | eqtr4di 2797 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
40 | | eqid 2739 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
41 | | eqid 2739 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
42 | | eqid 2739 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
43 | | simpl1l 1223 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑅 ∈ CRing) |
44 | | simp1r 1197 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
45 | 25, 28 | matrcl 21568 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
46 | 45 | simpld 495 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
47 | 44, 46 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑁 ∈ Fin) |
48 | 47 | adantr 481 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑁 ∈ Fin) |
49 | | simp1l 1196 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑅 ∈ CRing) |
50 | 49 | ad2antrr 723 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ CRing) |
51 | | crngring 19804 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
52 | 50, 51 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) |
53 | 40, 30 | ring0cl 19817 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
55 | | simpl1r 1224 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀 ∈ 𝐵) |
56 | 25, 40, 28 | matbas2i 21580 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
57 | | elmapi 8646 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
58 | 55, 56, 57 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
59 | 58 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
60 | | eldifi 4062 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → 𝑟 ∈ (𝑁 ∖ {𝐻})) |
61 | 60 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ (𝑁 ∖ {𝐻})) |
62 | 61 | eldifad 3900 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ 𝑁) |
63 | 62 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑟 ∈ 𝑁) |
64 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
65 | 59, 63, 64 | fovrnd 7453 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (𝑟𝑀𝑙) ∈ (Base‘𝑅)) |
66 | 54, 65 | ifcld 4506 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) ∈ (Base‘𝑅)) |
67 | 40, 29 | ringidcl 19816 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
68 | 52, 67 | syl 17 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 1 ∈ (Base‘𝑅)) |
69 | 68, 54 | ifcld 4506 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)) |
70 | 54 | 3adant2 1130 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
71 | 58 | fovrnda 7452 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ (𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
72 | 71 | 3impb 1114 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
73 | 70, 72 | ifcld 4506 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
74 | 73, 72 | ifcld 4506 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
75 | | simpl2 1191 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐼 ∈ 𝑁) |
76 | 58, 62, 75 | fovrnd 7453 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑟𝑀𝐼) ∈ (Base‘𝑅)) |
77 | | simpl3 1192 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐻 ∈ 𝑁) |
78 | | eldifsni 4724 |
. . . . . . . 8
⊢ (𝑟 ∈ (𝑁 ∖ {𝐻}) → 𝑟 ≠ 𝐻) |
79 | 61, 78 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ≠ 𝐻) |
80 | 26, 40, 41, 42, 43, 48, 66, 69, 74, 76, 62, 77, 79 | mdetero 21768 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
81 | | ifnot 4512 |
. . . . . . . . . . . . . . . . 17
⊢ if(¬
𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) |
82 | 81 | eqcomi 2748 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
84 | | ovif2 7382 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) |
85 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (𝑟𝑀𝐼) ∈ (Base‘𝑅)) |
86 | 40, 42, 29 | ringridm 19820 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
87 | 52, 85, 86 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
88 | 87 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
89 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝐼 → (𝑟𝑀𝑙) = (𝑟𝑀𝐼)) |
90 | 89 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → (𝑟𝑀𝑙) = (𝑟𝑀𝐼)) |
91 | 88, 90 | eqtr4d 2782 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝑙)) |
92 | 91 | ifeq1da 4491 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r‘𝑅) 0 ))) |
93 | 40, 42, 30 | ringrz 19836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r‘𝑅) 0 ) = 0 ) |
94 | 52, 85, 93 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅) 0 ) = 0 ) |
95 | 94 | ifeq2d 4480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
96 | 92, 95 | eqtrd 2779 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
97 | 84, 96 | eqtrid 2791 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
98 | 83, 97 | oveq12d 7302 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
99 | | ringmnd 19802 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
100 | 52, 99 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Mnd) |
101 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) |
102 | | imnan 400 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) ↔ ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) |
103 | 101, 102 | mpbi 229 |
. . . . . . . . . . . . . . . 16
⊢ ¬
(¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼) |
104 | 103 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) |
105 | 40, 30, 41 | mndifsplit 21794 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Mnd ∧ (𝑟𝑀𝑙) ∈ (Base‘𝑅) ∧ ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
106 | 100, 65, 104, 105 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
107 | | pm2.1 894 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑙 = 𝐼 ∨ 𝑙 = 𝐼) |
108 | | iftrue 4466 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑙 = 𝐼 ∨ 𝑙 = 𝐼) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙)) |
109 | 107, 108 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙)) |
110 | 98, 106, 109 | 3eqtr2d 2785 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)) |
111 | 110 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)) |
112 | | oveq1 7291 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑟 → (𝑘𝑀𝑙) = (𝑟𝑀𝑙)) |
113 | 112 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑟 → ((if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙) ↔ (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))) |
114 | 111, 113 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙))) |
115 | 114 | imp 407 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙)) |
116 | | iftrue 4466 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )))) |
117 | 116 | adantl 482 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )))) |
118 | 79 | neneqd 2949 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 = 𝐻) |
119 | 118 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → ¬ 𝑟 = 𝐻) |
120 | | eqeq1 2743 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → (𝑘 = 𝐻 ↔ 𝑟 = 𝐻)) |
121 | 120 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → (¬ 𝑘 = 𝐻 ↔ ¬ 𝑟 = 𝐻)) |
122 | 119, 121 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 = 𝐻)) |
123 | 122 | imp 407 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 = 𝐻) |
124 | 123 | iffalsed 4471 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
125 | | eldifn 4063 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → ¬ 𝑟 ∈ 𝑛) |
126 | 125 | ad2antll 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 ∈ 𝑛) |
127 | 126 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → ¬ 𝑟 ∈ 𝑛) |
128 | | eleq1w 2822 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ 𝑟 ∈ 𝑛)) |
129 | 128 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → (¬ 𝑘 ∈ 𝑛 ↔ ¬ 𝑟 ∈ 𝑛)) |
130 | 127, 129 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 ∈ 𝑛)) |
131 | 130 | imp 407 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 ∈ 𝑛) |
132 | 131 | iffalsed 4471 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
133 | 124, 132 | eqtrd 2779 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = (𝑘𝑀𝑙)) |
134 | 115, 117,
133 | 3eqtr4d 2789 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
135 | | iffalse 4469 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
136 | 135 | adantl 482 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
137 | 134, 136 | pm2.61dan 810 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
138 | 137 | mpoeq3dva 7361 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
139 | 138 | fveq2d 6787 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
140 | | neeq2 3008 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐻 → (𝑟 ≠ 𝑘 ↔ 𝑟 ≠ 𝐻)) |
141 | 140 | biimparc 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → 𝑟 ≠ 𝑘) |
142 | 141 | necomd 3000 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → 𝑘 ≠ 𝑟) |
143 | 142 | neneqd 2949 |
. . . . . . . . . . . 12
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → ¬ 𝑘 = 𝑟) |
144 | 143 | iffalsed 4471 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, 1 , 0 )) |
145 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
146 | 145 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
147 | 146 | ifeq2d 4480 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 ))) |
148 | | iftrue 4466 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
149 | 148 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
150 | 144, 147,
149 | 3eqtr4d 2789 |
. . . . . . . . . 10
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
151 | 112 | ifeq2d 4480 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))) |
152 | | vsnid 4599 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑟 ∈ {𝑟} |
153 | | elun2 4112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ {𝑟} → 𝑟 ∈ (𝑛 ∪ {𝑟})) |
154 | 152, 153 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑟 ∈ (𝑛 ∪ {𝑟}) |
155 | | eleq1w 2822 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑟 → (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ 𝑟 ∈ (𝑛 ∪ {𝑟}))) |
156 | 154, 155 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → 𝑘 ∈ (𝑛 ∪ {𝑟})) |
157 | 156 | iftrued 4468 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙))) |
158 | | iftrue 4466 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))) |
159 | 151, 157,
158 | 3eqtr4rd 2790 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
160 | 159 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
161 | | iffalse 4469 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
162 | | orc 864 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝑛 → (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟)) |
163 | | orel2 888 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑘 = 𝑟 → ((𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟) → 𝑘 ∈ 𝑛)) |
164 | 162, 163 | impbid2 225 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟))) |
165 | | elun 4084 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 ∈ {𝑟})) |
166 | | velsn 4578 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {𝑟} ↔ 𝑘 = 𝑟) |
167 | 166 | orbi2i 910 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ 𝑛 ∨ 𝑘 ∈ {𝑟}) ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟)) |
168 | 165, 167 | bitr2i 275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟) ↔ 𝑘 ∈ (𝑛 ∪ {𝑟})) |
169 | 164, 168 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))) |
170 | 169 | ifbid 4483 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑟 → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
171 | 161, 170 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
172 | 171 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
173 | 160, 172 | pm2.61dan 810 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
174 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
175 | 174 | ifeq2d 4480 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
176 | 175 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
177 | | iffalse 4469 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
178 | 177 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
179 | 173, 176,
178 | 3eqtr4d 2789 |
. . . . . . . . . 10
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
180 | 150, 179 | pm2.61dan 810 |
. . . . . . . . 9
⊢ (𝑟 ≠ 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
181 | 180 | mpoeq3dv 7363 |
. . . . . . . 8
⊢ (𝑟 ≠ 𝐻 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
182 | 181 | fveq2d 6787 |
. . . . . . 7
⊢ (𝑟 ≠ 𝐻 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
183 | 79, 182 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
184 | 80, 139, 183 | 3eqtr3d 2787 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
185 | 184 | eqeq2d 2750 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
186 | 185 | biimpd 228 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
187 | | difss 4067 |
. . . 4
⊢ (𝑁 ∖ {𝐻}) ⊆ 𝑁 |
188 | | ssfi 8965 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝐻}) ⊆ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin) |
189 | 47, 187, 188 | sylancl 586 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin) |
190 | 6, 12, 18, 24, 39, 186, 189 | findcard2d 8958 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
191 | | iba 528 |
. . . . . . . 8
⊢ (𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑙 = 𝐼 ∧ 𝑘 = 𝐻))) |
192 | 191 | ifbid 4483 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if(𝑙 = 𝐼, 1 , 0 ) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
193 | | iftrue 4466 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
194 | | iftrue 4466 |
. . . . . . . 8
⊢ ((𝑘 = 𝐻 ∨ 𝑙 = 𝐼) → if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
195 | 194 | orcs 872 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
196 | 192, 193,
195 | 3eqtr4d 2789 |
. . . . . 6
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
197 | 196 | adantl 482 |
. . . . 5
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
198 | | iffalse 4469 |
. . . . . . 7
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
199 | 198 | adantl 482 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
200 | | neqne 2952 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝐻 → 𝑘 ≠ 𝐻) |
201 | 200 | anim2i 617 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐻) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
202 | 201 | adantlr 712 |
. . . . . . . 8
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
203 | | eldifsn 4721 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑁 ∖ {𝐻}) ↔ (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
204 | 202, 203 | sylibr 233 |
. . . . . . 7
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → 𝑘 ∈ (𝑁 ∖ {𝐻})) |
205 | 204 | iftrued 4468 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙))) |
206 | | biorf 934 |
. . . . . . . 8
⊢ (¬
𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑘 = 𝐻 ∨ 𝑙 = 𝐼))) |
207 | | id 22 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 𝐻 → ¬ 𝑘 = 𝐻) |
208 | 207 | intnand 489 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝐻 → ¬ (𝑙 = 𝐼 ∧ 𝑘 = 𝐻)) |
209 | 208 | iffalsed 4471 |
. . . . . . . . 9
⊢ (¬
𝑘 = 𝐻 → if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ) = 0 ) |
210 | 209 | eqcomd 2745 |
. . . . . . . 8
⊢ (¬
𝑘 = 𝐻 → 0 = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
211 | 206, 210 | ifbieq1d 4484 |
. . . . . . 7
⊢ (¬
𝑘 = 𝐻 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
212 | 211 | adantl 482 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
213 | 199, 205,
212 | 3eqtrd 2783 |
. . . . 5
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
214 | 197, 213 | pm2.61dan 810 |
. . . 4
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
215 | 214 | mpoeq3ia 7362 |
. . 3
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
216 | 215 | fveq2i 6786 |
. 2
⊢ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))) |
217 | 190, 216 | eqtrdi 2795 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))) |