| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑚 = ∅ → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ ∅)) |
| 2 | 1 | ifbid 4549 |
. . . . . . 7
⊢ (𝑚 = ∅ → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 3 | 2 | ifeq2d 4546 |
. . . . . 6
⊢ (𝑚 = ∅ → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 4 | 3 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑚 = ∅ → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 5 | 4 | fveq2d 6910 |
. . . 4
⊢ (𝑚 = ∅ → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 6 | 5 | eqeq2d 2748 |
. . 3
⊢ (𝑚 = ∅ → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 7 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ 𝑛)) |
| 8 | 7 | ifbid 4549 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 9 | 8 | ifeq2d 4546 |
. . . . . 6
⊢ (𝑚 = 𝑛 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 10 | 9 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 11 | 10 | fveq2d 6910 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 12 | 11 | eqeq2d 2748 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 13 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))) |
| 14 | 13 | ifbid 4549 |
. . . . . . 7
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 15 | 14 | ifeq2d 4546 |
. . . . . 6
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 16 | 15 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 17 | 16 | fveq2d 6910 |
. . . 4
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 18 | 17 | eqeq2d 2748 |
. . 3
⊢ (𝑚 = (𝑛 ∪ {𝑟}) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 19 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘 ∈ 𝑚 ↔ 𝑘 ∈ (𝑁 ∖ {𝐻}))) |
| 20 | 19 | ifbid 4549 |
. . . . . . 7
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 21 | 20 | ifeq2d 4546 |
. . . . . 6
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 22 | 21 | mpoeq3dv 7512 |
. . . . 5
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 23 | 22 | fveq2d 6910 |
. . . 4
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 24 | 23 | eqeq2d 2748 |
. . 3
⊢ (𝑚 = (𝑁 ∖ {𝐻}) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑚, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 25 | | madufval.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 26 | | madufval.d |
. . . . . 6
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 27 | | madufval.j |
. . . . . 6
⊢ 𝐽 = (𝑁 maAdju 𝑅) |
| 28 | | madufval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 29 | | madufval.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
| 30 | | madufval.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 31 | 25, 26, 27, 28, 29, 30 | maducoeval 22645 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
| 32 | 31 | 3adant1l 1177 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
| 33 | | noel 4338 |
. . . . . . . 8
⊢ ¬
𝑘 ∈
∅ |
| 34 | | iffalse 4534 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ ∅ →
if(𝑘 ∈ ∅,
if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
| 35 | 33, 34 | mp1i 13 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
| 36 | 35 | ifeq2d 4546 |
. . . . . 6
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
| 37 | 36 | mpoeq3ia 7511 |
. . . . 5
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
| 38 | 37 | fveq2i 6909 |
. . . 4
⊢ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) |
| 39 | 32, 38 | eqtr4di 2795 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ ∅, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 40 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 41 | | eqid 2737 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 42 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 43 | | simpl1l 1225 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑅 ∈ CRing) |
| 44 | | simp1r 1199 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
| 45 | 25, 28 | matrcl 22416 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 46 | 45 | simpld 494 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 47 | 44, 46 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 48 | 47 | adantr 480 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑁 ∈ Fin) |
| 49 | | simp1l 1198 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝑅 ∈ CRing) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ CRing) |
| 51 | | crngring 20242 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 53 | 40, 30 | ring0cl 20264 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
| 54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
| 55 | | simpl1r 1226 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀 ∈ 𝐵) |
| 56 | 25, 40, 28 | matbas2i 22428 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 57 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 58 | 55, 56, 57 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 59 | 58 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 60 | | eldifi 4131 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → 𝑟 ∈ (𝑁 ∖ {𝐻})) |
| 61 | 60 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ (𝑁 ∖ {𝐻})) |
| 62 | 61 | eldifad 3963 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ∈ 𝑁) |
| 63 | 62 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑟 ∈ 𝑁) |
| 64 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
| 65 | 59, 63, 64 | fovcdmd 7605 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (𝑟𝑀𝑙) ∈ (Base‘𝑅)) |
| 66 | 54, 65 | ifcld 4572 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) ∈ (Base‘𝑅)) |
| 67 | 40, 29 | ringidcl 20262 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
| 68 | 52, 67 | syl 17 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 1 ∈ (Base‘𝑅)) |
| 69 | 68, 54 | ifcld 4572 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)) |
| 70 | 54 | 3adant2 1132 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
| 71 | 58 | fovcdmda 7604 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ (𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
| 72 | 71 | 3impb 1115 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
| 73 | 70, 72 | ifcld 4572 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
| 74 | 73, 72 | ifcld 4572 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
| 75 | | simpl2 1193 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐼 ∈ 𝑁) |
| 76 | 58, 62, 75 | fovcdmd 7605 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑟𝑀𝐼) ∈ (Base‘𝑅)) |
| 77 | | simpl3 1194 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝐻 ∈ 𝑁) |
| 78 | | eldifsni 4790 |
. . . . . . . 8
⊢ (𝑟 ∈ (𝑁 ∖ {𝐻}) → 𝑟 ≠ 𝐻) |
| 79 | 61, 78 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → 𝑟 ≠ 𝐻) |
| 80 | 26, 40, 41, 42, 43, 48, 66, 69, 74, 76, 62, 77, 79 | mdetero 22616 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 81 | | ifnot 4578 |
. . . . . . . . . . . . . . . . 17
⊢ if(¬
𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) |
| 82 | 81 | eqcomi 2746 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ) |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)) = if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
| 84 | | ovif2 7532 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) |
| 85 | 76 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (𝑟𝑀𝐼) ∈ (Base‘𝑅)) |
| 86 | 40, 42, 29 | ringridm 20267 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
| 87 | 52, 85, 86 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
| 88 | 87 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝐼)) |
| 89 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝐼 → (𝑟𝑀𝑙) = (𝑟𝑀𝐼)) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → (𝑟𝑀𝑙) = (𝑟𝑀𝐼)) |
| 91 | 88, 90 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) ∧ 𝑙 = 𝐼) → ((𝑟𝑀𝐼)(.r‘𝑅) 1 ) = (𝑟𝑀𝑙)) |
| 92 | 91 | ifeq1da 4557 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r‘𝑅) 0 ))) |
| 93 | 40, 42, 30 | ringrz 20291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Ring ∧ (𝑟𝑀𝐼) ∈ (Base‘𝑅)) → ((𝑟𝑀𝐼)(.r‘𝑅) 0 ) = 0 ) |
| 94 | 52, 85, 93 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅) 0 ) = 0 ) |
| 95 | 94 | ifeq2d 4546 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, (𝑟𝑀𝑙), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
| 96 | 92, 95 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, ((𝑟𝑀𝐼)(.r‘𝑅) 1 ), ((𝑟𝑀𝐼)(.r‘𝑅) 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
| 97 | 84, 96 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 )) |
| 98 | 83, 97 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
| 99 | | ringmnd 20240 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 100 | 52, 99 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Mnd) |
| 101 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) |
| 102 | | imnan 399 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑙 = 𝐼 → ¬ 𝑙 = 𝐼) ↔ ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) |
| 103 | 101, 102 | mpbi 230 |
. . . . . . . . . . . . . . . 16
⊢ ¬
(¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼) |
| 104 | 103 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) |
| 105 | 40, 30, 41 | mndifsplit 22642 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Mnd ∧ (𝑟𝑀𝑙) ∈ (Base‘𝑅) ∧ ¬ (¬ 𝑙 = 𝐼 ∧ 𝑙 = 𝐼)) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
| 106 | 100, 65, 104, 105 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (if(¬ 𝑙 = 𝐼, (𝑟𝑀𝑙), 0
)(+g‘𝑅)if(𝑙 = 𝐼, (𝑟𝑀𝑙), 0 ))) |
| 107 | | pm2.1 897 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑙 = 𝐼 ∨ 𝑙 = 𝐼) |
| 108 | | iftrue 4531 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑙 = 𝐼 ∨ 𝑙 = 𝐼) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙)) |
| 109 | 107, 108 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → if((¬ 𝑙 = 𝐼 ∨ 𝑙 = 𝐼), (𝑟𝑀𝑙), 0 ) = (𝑟𝑀𝑙)) |
| 110 | 98, 106, 109 | 3eqtr2d 2783 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)) |
| 111 | 110 | 3adant2 1132 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙)) |
| 112 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑟 → (𝑘𝑀𝑙) = (𝑟𝑀𝑙)) |
| 113 | 112 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑟 → ((if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙) ↔ (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑟𝑀𝑙))) |
| 114 | 111, 113 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙))) |
| 115 | 114 | imp 406 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))) = (𝑘𝑀𝑙)) |
| 116 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )))) |
| 117 | 116 | adantl 481 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 )))) |
| 118 | 79 | neneqd 2945 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 = 𝐻) |
| 119 | 118 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → ¬ 𝑟 = 𝐻) |
| 120 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → (𝑘 = 𝐻 ↔ 𝑟 = 𝐻)) |
| 121 | 120 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → (¬ 𝑘 = 𝐻 ↔ ¬ 𝑟 = 𝐻)) |
| 122 | 119, 121 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 = 𝐻)) |
| 123 | 122 | imp 406 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 = 𝐻) |
| 124 | 123 | iffalsed 4536 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 125 | | eldifn 4132 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛) → ¬ 𝑟 ∈ 𝑛) |
| 126 | 125 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ¬ 𝑟 ∈ 𝑛) |
| 127 | 126 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → ¬ 𝑟 ∈ 𝑛) |
| 128 | | eleq1w 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ 𝑟 ∈ 𝑛)) |
| 129 | 128 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → (¬ 𝑘 ∈ 𝑛 ↔ ¬ 𝑟 ∈ 𝑛)) |
| 130 | 127, 129 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑟 → ¬ 𝑘 ∈ 𝑛)) |
| 131 | 130 | imp 406 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → ¬ 𝑘 ∈ 𝑛) |
| 132 | 131 | iffalsed 4536 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = (𝑘𝑀𝑙)) |
| 133 | 124, 132 | eqtrd 2777 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = (𝑘𝑀𝑙)) |
| 134 | 115, 117,
133 | 3eqtr4d 2787 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 135 | | iffalse 4534 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 136 | 135 | adantl 481 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 137 | 134, 136 | pm2.61dan 813 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 138 | 137 | mpoeq3dva 7510 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 139 | 138 | fveq2d 6910 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, (if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))(+g‘𝑅)((𝑟𝑀𝐼)(.r‘𝑅)if(𝑙 = 𝐼, 1 , 0 ))), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 140 | | neeq2 3004 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐻 → (𝑟 ≠ 𝑘 ↔ 𝑟 ≠ 𝐻)) |
| 141 | 140 | biimparc 479 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → 𝑟 ≠ 𝑘) |
| 142 | 141 | necomd 2996 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → 𝑘 ≠ 𝑟) |
| 143 | 142 | neneqd 2945 |
. . . . . . . . . . . 12
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → ¬ 𝑘 = 𝑟) |
| 144 | 143 | iffalsed 4536 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 )) = if(𝑙 = 𝐼, 1 , 0 )) |
| 145 | | iftrue 4531 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
| 146 | 145 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
| 147 | 146 | ifeq2d 4546 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑙 = 𝐼, 1 , 0 ))) |
| 148 | | iftrue 4531 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
| 149 | 148 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
| 150 | 144, 147,
149 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ ((𝑟 ≠ 𝐻 ∧ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 151 | 112 | ifeq2d 4546 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))) |
| 152 | | vsnid 4663 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑟 ∈ {𝑟} |
| 153 | | elun2 4183 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ {𝑟} → 𝑟 ∈ (𝑛 ∪ {𝑟})) |
| 154 | 152, 153 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑟 ∈ (𝑛 ∪ {𝑟}) |
| 155 | | eleq1w 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑟 → (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ 𝑟 ∈ (𝑛 ∪ {𝑟}))) |
| 156 | 154, 155 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑟 → 𝑘 ∈ (𝑛 ∪ {𝑟})) |
| 157 | 156 | iftrued 4533 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙))) |
| 158 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙))) |
| 159 | 151, 157,
158 | 3eqtr4rd 2788 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 160 | 159 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 161 | | iffalse 4534 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 162 | | orc 868 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝑛 → (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟)) |
| 163 | | orel2 891 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑘 = 𝑟 → ((𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟) → 𝑘 ∈ 𝑛)) |
| 164 | 162, 163 | impbid2 226 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟))) |
| 165 | | elun 4153 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑛 ∪ {𝑟}) ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 ∈ {𝑟})) |
| 166 | | velsn 4642 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {𝑟} ↔ 𝑘 = 𝑟) |
| 167 | 166 | orbi2i 913 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ 𝑛 ∨ 𝑘 ∈ {𝑟}) ↔ (𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟)) |
| 168 | 165, 167 | bitr2i 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝑛 ∨ 𝑘 = 𝑟) ↔ 𝑘 ∈ (𝑛 ∪ {𝑟})) |
| 169 | 164, 168 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑘 = 𝑟 → (𝑘 ∈ 𝑛 ↔ 𝑘 ∈ (𝑛 ∪ {𝑟}))) |
| 170 | 169 | ifbid 4549 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑘 = 𝑟 → if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 171 | 161, 170 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝑟 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 172 | 171 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) ∧ ¬ 𝑘 = 𝑟) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 173 | 160, 172 | pm2.61dan 813 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 174 | | iffalse 4534 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 175 | 174 | ifeq2d 4546 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 176 | 175 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 177 | | iffalse 4534 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 179 | 173, 176,
178 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ ((𝑟 ≠ 𝐻 ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 180 | 150, 179 | pm2.61dan 813 |
. . . . . . . . 9
⊢ (𝑟 ≠ 𝐻 → if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) |
| 181 | 180 | mpoeq3dv 7512 |
. . . . . . . 8
⊢ (𝑟 ≠ 𝐻 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) |
| 182 | 181 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑟 ≠ 𝐻 → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 183 | 79, 182 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑟, if(𝑙 = 𝐼, 0 , (𝑟𝑀𝑙)), if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 184 | 80, 139, 183 | 3eqtr3d 2785 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 185 | 184 | eqeq2d 2748 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) ↔ (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 186 | 185 | biimpd 229 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑛 ⊆ (𝑁 ∖ {𝐻}) ∧ 𝑟 ∈ ((𝑁 ∖ {𝐻}) ∖ 𝑛))) → ((𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ 𝑛, if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑛 ∪ {𝑟}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))))) |
| 187 | | difss 4136 |
. . . 4
⊢ (𝑁 ∖ {𝐻}) ⊆ 𝑁 |
| 188 | | ssfi 9213 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ (𝑁 ∖ {𝐻}) ⊆ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin) |
| 189 | 47, 187, 188 | sylancl 586 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝑁 ∖ {𝐻}) ∈ Fin) |
| 190 | 6, 12, 18, 24, 39, 186, 189 | findcard2d 9206 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))))) |
| 191 | | iba 527 |
. . . . . . . 8
⊢ (𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑙 = 𝐼 ∧ 𝑘 = 𝐻))) |
| 192 | 191 | ifbid 4549 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if(𝑙 = 𝐼, 1 , 0 ) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
| 193 | | iftrue 4531 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑙 = 𝐼, 1 , 0 )) |
| 194 | | iftrue 4531 |
. . . . . . . 8
⊢ ((𝑘 = 𝐻 ∨ 𝑙 = 𝐼) → if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
| 195 | 194 | orcs 876 |
. . . . . . 7
⊢ (𝑘 = 𝐻 → if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)) = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
| 196 | 192, 193,
195 | 3eqtr4d 2787 |
. . . . . 6
⊢ (𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 197 | 196 | adantl 481 |
. . . . 5
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 198 | | iffalse 4534 |
. . . . . . 7
⊢ (¬
𝑘 = 𝐻 → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 199 | 198 | adantl 481 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) |
| 200 | | neqne 2948 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝐻 → 𝑘 ≠ 𝐻) |
| 201 | 200 | anim2i 617 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐻) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
| 202 | 201 | adantlr 715 |
. . . . . . . 8
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
| 203 | | eldifsn 4786 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑁 ∖ {𝐻}) ↔ (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐻)) |
| 204 | 202, 203 | sylibr 234 |
. . . . . . 7
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → 𝑘 ∈ (𝑁 ∖ {𝐻})) |
| 205 | 204 | iftrued 4533 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)) = if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙))) |
| 206 | | biorf 937 |
. . . . . . . 8
⊢ (¬
𝑘 = 𝐻 → (𝑙 = 𝐼 ↔ (𝑘 = 𝐻 ∨ 𝑙 = 𝐼))) |
| 207 | | id 22 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 𝐻 → ¬ 𝑘 = 𝐻) |
| 208 | 207 | intnand 488 |
. . . . . . . . . 10
⊢ (¬
𝑘 = 𝐻 → ¬ (𝑙 = 𝐼 ∧ 𝑘 = 𝐻)) |
| 209 | 208 | iffalsed 4536 |
. . . . . . . . 9
⊢ (¬
𝑘 = 𝐻 → if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ) = 0 ) |
| 210 | 209 | eqcomd 2743 |
. . . . . . . 8
⊢ (¬
𝑘 = 𝐻 → 0 = if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 )) |
| 211 | 206, 210 | ifbieq1d 4550 |
. . . . . . 7
⊢ (¬
𝑘 = 𝐻 → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 212 | 211 | adantl 481 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 213 | 199, 205,
212 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐻) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 214 | 197, 213 | pm2.61dan 813 |
. . . 4
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))) = if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 215 | 214 | mpoeq3ia 7511 |
. . 3
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))) |
| 216 | 215 | fveq2i 6909 |
. 2
⊢ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), if(𝑘 ∈ (𝑁 ∖ {𝐻}), if(𝑙 = 𝐼, 0 , (𝑘𝑀𝑙)), (𝑘𝑀𝑙))))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙)))) |
| 217 | 190, 216 | eqtrdi 2793 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if((𝑘 = 𝐻 ∨ 𝑙 = 𝐼), if((𝑙 = 𝐼 ∧ 𝑘 = 𝐻), 1 , 0 ), (𝑘𝑀𝑙))))) |