Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.44 | Structured version Visualization version GIF version |
Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
pm3.44 | ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) | |
2 | id 22 | . 2 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜑)) | |
3 | 1, 2 | jaao 952 | 1 ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: jao 958 jaob 959 ssfi 8956 dvmptconst 43456 dvmptidg 43458 dvmulcncf 43466 dvdivcncf 43468 fourierdlem101 43748 |
Copyright terms: Public domain | W3C validator |