MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.44 Structured version   Visualization version   GIF version

Theorem pm3.44 958
Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Assertion
Ref Expression
pm3.44 (((𝜓𝜑) ∧ (𝜒𝜑)) → ((𝜓𝜒) → 𝜑))

Proof of Theorem pm3.44
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜑) → (𝜓𝜑))
2 id 22 . 2 ((𝜒𝜑) → (𝜒𝜑))
31, 2jaao 953 1 (((𝜓𝜑) ∧ (𝜒𝜑)) → ((𝜓𝜒) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846
This theorem is referenced by:  jao  959  jaob  960  ssfi  9172  dvmptconst  44621  dvmptidg  44623  dvmulcncf  44631  dvdivcncf  44633  fourierdlem101  44913
  Copyright terms: Public domain W3C validator