Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
(-π[,]π)) |
2 | | fourierdlem101.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) |
3 | 2 | ffvelrnda 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
4 | | fourierdlem101.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑁 ∈
ℕ) |
6 | | pire 25615 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
7 | 6 | renegcli 11282 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ |
8 | | eliccre 43043 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
9 | 7, 6, 8 | mp3an12 1450 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (-π[,]π) →
𝑡 ∈
ℝ) |
10 | 9 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
11 | | fourierdlem101.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
12 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑋 ∈
ℝ) |
13 | 10, 12 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
14 | | fourierdlem101.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
15 | 14 | dirkerre 43636 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑡 − 𝑋) ∈ ℝ) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
16 | 5, 13, 15 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℂ) |
18 | 3, 17 | mulcld 10995 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ℂ) |
19 | | fourierdlem101.g |
. . . . . 6
⊢ 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
20 | 19 | fvmpt2 6886 |
. . . . 5
⊢ ((𝑡 ∈ (-π[,]π) ∧
((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ℂ) → (𝐺‘𝑡) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
21 | 1, 18, 20 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐺‘𝑡) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
22 | 21 | eqcomd 2744 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝐺‘𝑡)) |
23 | 22 | itgeq2dv 24946 |
. 2
⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)(𝐺‘𝑡) d𝑡) |
24 | | fourierdlem101.p |
. . 3
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
25 | | fveq2 6774 |
. . . . 5
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
26 | 25 | oveq1d 7290 |
. . . 4
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘𝑖) − 𝑋)) |
27 | 26 | cbvmptv 5187 |
. . 3
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
28 | | fourierdlem101.6 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
29 | | fourierdlem101.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
30 | 18, 19 | fmptd 6988 |
. . 3
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℂ) |
31 | 19 | reseq1i 5887 |
. . . . 5
⊢ (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
32 | | ioossicc 13165 |
. . . . . . 7
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
33 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ) |
34 | 33 | rexrd 11025 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℝ*) |
35 | 34 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
36 | 6 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ) |
37 | 36 | rexrd 11025 |
. . . . . . . . 9
⊢ (𝜑 → π ∈
ℝ*) |
38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
39 | 24, 28, 29 | fourierdlem15 43663 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
40 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
41 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
42 | 35, 38, 40, 41 | fourierdlem8 43656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
43 | 32, 42 | sstrid 3932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
44 | 43 | resmptd 5948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
45 | 31, 44 | eqtrid 2790 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
46 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ) |
47 | 46, 43 | feqresmpt 6838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
48 | | fourierdlem101.fcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
49 | 47, 48 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
50 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))) |
51 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) |
52 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) |
53 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑟 → (𝑡 − 𝑋) = (𝑟 − 𝑋)) |
54 | 53 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑡 = 𝑟) → (𝑡 − 𝑋) = (𝑟 − 𝑋)) |
55 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
56 | | elioore 13109 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑟 ∈ ℝ) |
57 | 56 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ) |
58 | 11 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
59 | 57, 58 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 − 𝑋) ∈ ℝ) |
60 | 59 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 − 𝑋) ∈ ℝ) |
61 | 52, 54, 55, 60 | fvmptd 6882 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) = (𝑟 − 𝑋)) |
62 | 61 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) = (𝑟 − 𝑋)) |
63 | 51, 62 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → 𝑠 = (𝑟 − 𝑋)) |
64 | 63 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → ((𝐷‘𝑁)‘𝑠) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
65 | | elioore 13109 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
66 | 65 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ℝ) |
67 | 11 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
68 | 66, 67 | resubcld 11403 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 − 𝑋) ∈ ℝ) |
69 | 68 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 − 𝑋) ∈ ℝ) |
70 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) |
71 | 69, 70 | fmptd 6988 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
72 | 71 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) ∈ ℝ) |
73 | 4 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑁 ∈ ℕ) |
74 | 14 | dirkerre 43636 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑟 − 𝑋) ∈ ℝ) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) ∈ ℝ) |
75 | 73, 60, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) ∈ ℝ) |
76 | 50, 64, 72, 75 | fvmptd 6882 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
77 | 76 | eqcomd 2744 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) = ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟))) |
78 | 77 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
79 | 53 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑡 = 𝑟 → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
80 | 79 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
81 | 80 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋)))) |
82 | 14 | dirkerre 43636 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℝ) |
83 | 4, 82 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℝ) |
84 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) |
85 | 83, 84 | fmptd 6988 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ) |
86 | 85 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ) |
87 | | fcompt 7005 |
. . . . . . . 8
⊢ (((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ ∧ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
88 | 86, 71, 87 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
89 | 78, 81, 88 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)))) |
90 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) |
91 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ) |
92 | 11 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℂ) |
93 | 92 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → 𝑋 ∈ ℂ) |
94 | 91, 93 | negsubd 11338 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → (𝑡 + -𝑋) = (𝑡 − 𝑋)) |
95 | 94 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → (𝑡 − 𝑋) = (𝑡 + -𝑋)) |
96 | 95 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋))) |
97 | 92 | negcld 11319 |
. . . . . . . . . . 11
⊢ (𝜑 → -𝑋 ∈ ℂ) |
98 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) |
99 | 98 | addccncf 24080 |
. . . . . . . . . . 11
⊢ (-𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
100 | 97, 99 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
101 | 96, 100 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
102 | 101 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
103 | | ioossre 13140 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
104 | | ax-resscn 10928 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
105 | 103, 104 | sstri 3930 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
106 | 105 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
107 | 104 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
108 | 90, 102, 106, 107, 69 | cncfmptssg 43412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ)) |
109 | 83 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℂ) |
110 | 109, 84 | fmptd 6988 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ) |
111 | | ssid 3943 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
112 | 14 | dirkerf 43638 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) |
113 | 4, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℝ) |
114 | 113 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷‘𝑁) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))) |
115 | 14 | dirkercncf 43648 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) |
116 | 4, 115 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) |
117 | 114, 116 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ)) |
118 | | cncffvrn 24061 |
. . . . . . . . . 10
⊢ ((ℂ
⊆ ℂ ∧ (𝑠
∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ)) |
119 | 111, 117,
118 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ)) |
120 | 110, 119 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
121 | 120 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
122 | 108, 121 | cncfco 24070 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
123 | 89, 122 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
124 | 49, 123 | mulcncf 24610 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
125 | 45, 124 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
126 | | cncff 24056 |
. . . . . . . 8
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
127 | 48, 126 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
128 | 113 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷‘𝑁):ℝ⟶ℝ) |
129 | | elioore 13109 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
130 | 129 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
131 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
132 | 130, 131 | resubcld 11403 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 − 𝑋) ∈ ℝ) |
133 | 128, 132 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) ∈ ℝ) |
134 | 133 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) ∈ ℂ) |
135 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) |
136 | 134, 135 | fmptd 6988 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
137 | 136 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
138 | | eqid 2738 |
. . . . . . 7
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
139 | | fourierdlem101.r |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
140 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑄‘𝑖) → (𝑡 − 𝑋) = ((𝑄‘𝑖) − 𝑋)) |
141 | 140 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑄‘𝑖) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) |
142 | 141 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑄‘𝑖) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
143 | 142 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑡 = (𝑄‘𝑖)) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
144 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
145 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
146 | 145 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
147 | 146 | adantl 482 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
148 | | velsn 4577 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {(𝑄‘𝑖)} ↔ 𝑡 = (𝑄‘𝑖)) |
149 | 148 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ {(𝑄‘𝑖)} ↔ ¬ 𝑡 = (𝑄‘𝑖)) |
150 | | elunnel2 42582 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ∧ ¬ 𝑡 ∈ {(𝑄‘𝑖)}) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
151 | 149, 150 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
152 | 151 | adantll 711 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
153 | 113 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝐷‘𝑁):ℝ⟶ℝ) |
154 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 = (𝑄‘𝑖)) |
155 | 9 | ssriv 3925 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(-π[,]π) ⊆ ℝ |
156 | | fzossfz 13406 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0..^𝑀) ⊆
(0...𝑀) |
157 | 156, 41 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
158 | 40, 157 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
159 | 155, 158 | sselid 3919 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
160 | 159 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
161 | 154, 160 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
162 | 161 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
163 | 152, 65 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
164 | 162, 163 | pm2.61dan 810 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑡 ∈ ℝ) |
165 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑋 ∈ ℝ) |
166 | 164, 165 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑡 − 𝑋) ∈ ℝ) |
167 | 153, 166 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
168 | 167 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
169 | 144, 147,
152, 168 | fvmptd 6882 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
170 | 143, 169 | ifeqda 4495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
171 | 170 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
172 | 113 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑁):ℝ⟶ℝ) |
173 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
174 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↔ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
175 | 173, 174 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
176 | 175 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
177 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 = (𝑄‘𝑖)) |
178 | 177 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 = (𝑄‘𝑖)) |
179 | 159 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → (𝑄‘𝑖) ∈ ℝ) |
180 | 178, 179 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ) |
181 | 180 | ex 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) |
182 | 181 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) |
183 | | pm3.44 957 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) ∧ (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ)) |
184 | 129, 182,
183 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ)) |
185 | 176, 184 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑠 ∈ ℝ) |
186 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑋 ∈ ℝ) |
187 | 185, 186 | resubcld 11403 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 − 𝑋) ∈ ℝ) |
188 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) = (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) |
189 | 187, 188 | fmptd 6988 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℝ) |
190 | | fcompt 7005 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷‘𝑁):ℝ⟶ℝ ∧ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℝ) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)))) |
191 | 172, 189,
190 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)))) |
192 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) = (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) |
193 | 145 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑠 = 𝑡) → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
194 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
195 | 192, 193,
194, 166 | fvmptd 6882 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡) = (𝑡 − 𝑋)) |
196 | 195 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
197 | 196 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
198 | 191, 197 | eqtr2d 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)))) |
199 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) |
200 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
201 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
202 | 200, 201 | negsubd 11338 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑠 + -𝑋) = (𝑠 − 𝑋)) |
203 | 202 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑠 − 𝑋) = (𝑠 + -𝑋)) |
204 | 203 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋))) |
205 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) |
206 | 205 | addccncf 24080 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
207 | 97, 206 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
208 | 204, 207 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
209 | 208 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
210 | 159 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
211 | 210 | snssd 4742 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘𝑖)} ⊆ ℂ) |
212 | 106, 211 | unssd 4120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ) |
213 | 199, 209,
212, 107, 187 | cncfmptssg 43412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℝ)) |
214 | 114, 120 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘𝑁) ∈ (ℝ–cn→ℂ)) |
215 | 214 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑁) ∈ (ℝ–cn→ℂ)) |
216 | 213, 215 | cncfco 24070 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ)) |
217 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
218 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) = ((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
219 | 217 | cnfldtop 23947 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈ Top |
220 | | unicntop 23949 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
221 | 220 | restid 17144 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
222 | 219, 221 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
223 | 222 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
224 | 217, 218,
223 | cncfcn 24073 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
225 | 212, 111,
224 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
226 | 216, 225 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
227 | 198, 226 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
228 | 217 | cnfldtopon 23946 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
229 | | resttopon 22312 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}))) |
230 | 228, 212,
229 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}))) |
231 | | cncnp 22431 |
. . . . . . . . . . . . 13
⊢
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
232 | 230, 228,
231 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
233 | 227, 232 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠))) |
234 | 233 | simprd 496 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)) |
235 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑄‘𝑖)) |
236 | | elsng 4575 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘𝑖) ∈ ℝ → ((𝑄‘𝑖) ∈ {(𝑄‘𝑖)} ↔ (𝑄‘𝑖) = (𝑄‘𝑖))) |
237 | 159, 236 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ {(𝑄‘𝑖)} ↔ (𝑄‘𝑖) = (𝑄‘𝑖))) |
238 | 235, 237 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ {(𝑄‘𝑖)}) |
239 | 238 | olcd 871 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘𝑖) ∈ {(𝑄‘𝑖)})) |
240 | | elun 4083 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↔ ((𝑄‘𝑖) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘𝑖) ∈ {(𝑄‘𝑖)})) |
241 | 239, 240 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
242 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑄‘𝑖) →
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
243 | 242 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑄‘𝑖) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖)))) |
244 | 243 | rspccva 3560 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) ∧ (𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
245 | 234, 241,
244 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
246 | 171, 245 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
247 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
248 | 218, 217,
247, 137, 106, 210 | ellimc 25037 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘𝑖)) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖)))) |
249 | 246, 248 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘𝑖))) |
250 | 127, 137,
138, 139, 249 | mullimcf 43164 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
251 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
252 | 251 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
253 | 252 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
254 | 253 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)))) |
255 | 254 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
256 | 250, 255 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
257 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
258 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → 𝑠 = 𝑡) |
259 | 258 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
260 | 259 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
261 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
262 | 113 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷‘𝑁):ℝ⟶ℝ) |
263 | 262, 69 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
264 | 257, 260,
261, 263 | fvmptd 6882 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
265 | 264 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
266 | 265 | mpteq2dva 5174 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
267 | 266 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖))) |
268 | 256, 267 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖))) |
269 | 45 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
270 | 269 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
271 | 268, 270 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
272 | | fourierdlem101.l |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
273 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) |
274 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → (𝑡 − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
275 | 274 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝑄‘(𝑖 + 1)) − 𝑋) = (𝑡 − 𝑋)) |
276 | 275 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
277 | 273, 276 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
278 | 277 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
279 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) |
280 | 279 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) |
281 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
282 | 146 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
283 | | elun 4083 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})) |
284 | 283 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})) |
285 | 284 | orcomd 868 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
286 | 285 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
287 | | velsn 4577 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑡 = (𝑄‘(𝑖 + 1))) |
288 | 287 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) |
289 | 288 | biimpri 227 |
. . . . . . . . . . . . 13
⊢ (¬
𝑡 = (𝑄‘(𝑖 + 1)) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}) |
290 | 289 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}) |
291 | | pm2.53 848 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))} → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
292 | 286, 290,
291 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
293 | 172 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝐷‘𝑁):ℝ⟶ℝ) |
294 | 292, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
295 | 11 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑋 ∈ ℝ) |
296 | 294, 295 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡 − 𝑋) ∈ ℝ) |
297 | 293, 296 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
298 | 281, 282,
292, 297 | fvmptd 6882 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
299 | 280, 298 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
300 | 278, 299 | pm2.61dan 810 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
301 | 300 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
302 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
303 | 104 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℝ ⊆
ℂ) |
304 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
305 | 11 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ ℝ) |
306 | 304, 305 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (𝑡 − 𝑋) ∈ ℝ) |
307 | 90, 101, 303, 303, 306 | cncfmptssg 43412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (𝑡 − 𝑋)) ∈ (ℝ–cn→ℝ)) |
308 | 307, 214 | cncfcompt 43424 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (ℝ–cn→ℂ)) |
309 | 308 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (ℝ–cn→ℂ)) |
310 | 103 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
311 | | fzofzp1 13484 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
312 | 311 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
313 | 40, 312 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
(-π[,]π)) |
314 | 155, 313 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
315 | 314 | snssd 4742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℝ) |
316 | 310, 315 | unssd 4120 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℝ) |
317 | 111 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℂ ⊆
ℂ) |
318 | 172 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝐷‘𝑁):ℝ⟶ℝ) |
319 | 316 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑡 ∈ ℝ) |
320 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑋 ∈ ℝ) |
321 | 319, 320 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡 − 𝑋) ∈ ℝ) |
322 | 318, 321 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
323 | 322 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℂ) |
324 | 302, 309,
316, 317, 323 | cncfmptssg 43412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ)) |
325 | 155, 104 | sstri 3930 |
. . . . . . . . . . . . . . 15
⊢
(-π[,]π) ⊆ ℂ |
326 | 325, 313 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
327 | 326 | snssd 4742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℂ) |
328 | 106, 327 | unssd 4120 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ) |
329 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
330 | 217, 329,
223 | cncfcn 24073 |
. . . . . . . . . . . 12
⊢
(((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ ∧ ℂ
⊆ ℂ) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
331 | 328, 111,
330 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
332 | 324, 331 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
333 | | resttopon 22312 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))) |
334 | 228, 328,
333 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))) |
335 | | cncnp 22431 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
336 | 334, 228,
335 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
337 | 332, 336 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠))) |
338 | 337 | simprd 496 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)) |
339 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))) |
340 | | elsng 4575 |
. . . . . . . . . . . 12
⊢ ((𝑄‘(𝑖 + 1)) ∈ ℝ → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))) |
341 | 314, 340 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))) |
342 | 339, 341 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))}) |
343 | 342 | olcd 871 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))})) |
344 | | elun 4083 |
. . . . . . . . 9
⊢ ((𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ ((𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))})) |
345 | 343, 344 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
346 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑄‘(𝑖 + 1)) →
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
347 | 346 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑠 = (𝑄‘(𝑖 + 1)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))) |
348 | 347 | rspccva 3560 |
. . . . . . . 8
⊢
((∀𝑠 ∈
(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) ∧ (𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
349 | 338, 345,
348 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
350 | 301, 349 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
351 | | eqid 2738 |
. . . . . . 7
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
352 | 329, 217,
351, 137, 106, 326 | ellimc 25037 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘(𝑖 + 1))) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))) |
353 | 350, 352 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘(𝑖 + 1)))) |
354 | 127, 137,
138, 272, 353 | mullimcf 43164 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘(𝑖 + 1)))) |
355 | 266, 254,
45 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
356 | 355 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
357 | 354, 356 | eleqtrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
358 | 24, 27, 28, 29, 11, 30, 125, 271, 357 | fourierdlem93 43740 |
. 2
⊢ (𝜑 → ∫(-π[,]π)(𝐺‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠) |
359 | 19 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
360 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑡 = (𝑋 + 𝑠) → (𝐹‘𝑡) = (𝐹‘(𝑋 + 𝑠))) |
361 | 360 | oveq1d 7290 |
. . . . . 6
⊢ (𝑡 = (𝑋 + 𝑠) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
362 | 361 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
363 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑡 = (𝑋 + 𝑠) → (𝑡 − 𝑋) = ((𝑋 + 𝑠) − 𝑋)) |
364 | 92 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℂ) |
365 | 33, 11 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-π − 𝑋) ∈
ℝ) |
366 | 365 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
367 | 36, 11 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ (𝜑 → (π − 𝑋) ∈
ℝ) |
368 | 367 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
369 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
370 | | eliccre 43043 |
. . . . . . . . . . 11
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ ∧ 𝑠
∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
371 | 366, 368,
369, 370 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
372 | 371 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℂ) |
373 | 364, 372 | pncan2d 11334 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝑋 + 𝑠) − 𝑋) = 𝑠) |
374 | 363, 373 | sylan9eqr 2800 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → (𝑡 − 𝑋) = 𝑠) |
375 | 374 | fveq2d 6778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘𝑠)) |
376 | 375 | oveq2d 7291 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
377 | 362, 376 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
378 | 7 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ∈
ℝ) |
379 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℝ) |
380 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℝ) |
381 | 380, 371 | readdcld 11004 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
382 | 33 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℂ) |
383 | 92, 382 | pncan3d 11335 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 + (-π − 𝑋)) = -π) |
384 | 383 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → -π = (𝑋 + (-π − 𝑋))) |
385 | 384 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π = (𝑋 + (-π − 𝑋))) |
386 | | elicc2 13144 |
. . . . . . . . . 10
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ) → (𝑠
∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋)))) |
387 | 366, 368,
386 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋)))) |
388 | 369, 387 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋))) |
389 | 388 | simp2d 1142 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ≤ 𝑠) |
390 | 366, 371,
380, 389 | leadd2dd 11590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (-π − 𝑋)) ≤ (𝑋 + 𝑠)) |
391 | 385, 390 | eqbrtrd 5096 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ≤ (𝑋 + 𝑠)) |
392 | 388 | simp3d 1143 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ≤ (π − 𝑋)) |
393 | 371, 368,
380, 392 | leadd2dd 11590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ (𝑋 + (π − 𝑋))) |
394 | | picn 25616 |
. . . . . . . 8
⊢ π
∈ ℂ |
395 | 394 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℂ) |
396 | 364, 395 | pncan3d 11335 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (π − 𝑋)) = π) |
397 | 393, 396 | breqtrd 5100 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ π) |
398 | 378, 379,
381, 391, 397 | eliccd 43042 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ (-π[,]π)) |
399 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐹:(-π[,]π)⟶ℂ) |
400 | 399, 398 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
401 | 371, 109 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑁)‘𝑠) ∈ ℂ) |
402 | 400, 401 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) ∈ ℂ) |
403 | 359, 377,
398, 402 | fvmptd 6882 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐺‘(𝑋 + 𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
404 | 403 | itgeq2dv 24946 |
. 2
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) |
405 | 23, 358, 404 | 3eqtrd 2782 |
1
⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) |