| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
(-π[,]π)) |
| 2 | | fourierdlem101.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) |
| 3 | 2 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐹‘𝑡) ∈ ℂ) |
| 4 | | fourierdlem101.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑁 ∈
ℕ) |
| 6 | | pire 26500 |
. . . . . . . . . . . 12
⊢ π
∈ ℝ |
| 7 | 6 | renegcli 11570 |
. . . . . . . . . . 11
⊢ -π
∈ ℝ |
| 8 | | eliccre 45518 |
. . . . . . . . . . 11
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
| 9 | 7, 6, 8 | mp3an12 1453 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (-π[,]π) →
𝑡 ∈
ℝ) |
| 10 | 9 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑡 ∈
ℝ) |
| 11 | | fourierdlem101.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 12 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → 𝑋 ∈
ℝ) |
| 13 | 10, 12 | resubcld 11691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝑡 − 𝑋) ∈ ℝ) |
| 14 | | fourierdlem101.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) ·
(sin‘(𝑠 /
2))))))) |
| 15 | 14 | dirkerre 46110 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑡 − 𝑋) ∈ ℝ) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 16 | 5, 13, 15 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 17 | 16 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℂ) |
| 18 | 3, 17 | mulcld 11281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ℂ) |
| 19 | | fourierdlem101.g |
. . . . . 6
⊢ 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 20 | 19 | fvmpt2 7027 |
. . . . 5
⊢ ((𝑡 ∈ (-π[,]π) ∧
((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ℂ) → (𝐺‘𝑡) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 21 | 1, 18, 20 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → (𝐺‘𝑡) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 22 | 21 | eqcomd 2743 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (-π[,]π)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝐺‘𝑡)) |
| 23 | 22 | itgeq2dv 25817 |
. 2
⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫(-π[,]π)(𝐺‘𝑡) d𝑡) |
| 24 | | fourierdlem101.p |
. . 3
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 25 | | fveq2 6906 |
. . . . 5
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
| 26 | 25 | oveq1d 7446 |
. . . 4
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘𝑖) − 𝑋)) |
| 27 | 26 | cbvmptv 5255 |
. . 3
⊢ (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
| 28 | | fourierdlem101.6 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 29 | | fourierdlem101.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 30 | 18, 19 | fmptd 7134 |
. . 3
⊢ (𝜑 → 𝐺:(-π[,]π)⟶ℂ) |
| 31 | 19 | reseq1i 5993 |
. . . . 5
⊢ (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 32 | | ioossicc 13473 |
. . . . . . 7
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
| 33 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ) |
| 34 | 33 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℝ*) |
| 35 | 34 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
| 36 | 6 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ) |
| 37 | 36 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 → π ∈
ℝ*) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
| 39 | 24, 28, 29 | fourierdlem15 46137 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 41 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
| 42 | 35, 38, 40, 41 | fourierdlem8 46130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 43 | 32, 42 | sstrid 3995 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 44 | 43 | resmptd 6058 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
| 45 | 31, 44 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
| 46 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ) |
| 47 | 46, 43 | feqresmpt 6978 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
| 48 | | fourierdlem101.fcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 49 | 47, 48 | eqeltrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 50 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))) |
| 51 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) |
| 52 | | eqidd 2738 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) |
| 53 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑟 → (𝑡 − 𝑋) = (𝑟 − 𝑋)) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑡 = 𝑟) → (𝑡 − 𝑋) = (𝑟 − 𝑋)) |
| 55 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 56 | | elioore 13417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑟 ∈ ℝ) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ) |
| 58 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 59 | 57, 58 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 − 𝑋) ∈ ℝ) |
| 60 | 59 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 − 𝑋) ∈ ℝ) |
| 61 | 52, 54, 55, 60 | fvmptd 7023 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) = (𝑟 − 𝑋)) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) = (𝑟 − 𝑋)) |
| 63 | 51, 62 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → 𝑠 = (𝑟 − 𝑋)) |
| 64 | 63 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) → ((𝐷‘𝑁)‘𝑠) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
| 65 | | elioore 13417 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
| 66 | 65 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ℝ) |
| 67 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 68 | 66, 67 | resubcld 11691 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 − 𝑋) ∈ ℝ) |
| 69 | 68 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑡 − 𝑋) ∈ ℝ) |
| 70 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) |
| 71 | 69, 70 | fmptd 7134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
| 72 | 71 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟) ∈ ℝ) |
| 73 | 4 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑁 ∈ ℕ) |
| 74 | 14 | dirkerre 46110 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑟 − 𝑋) ∈ ℝ) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) ∈ ℝ) |
| 75 | 73, 60, 74 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) ∈ ℝ) |
| 76 | 50, 64, 72, 75 | fvmptd 7023 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
| 77 | 76 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑟 − 𝑋)) = ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟))) |
| 78 | 77 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
| 79 | 53 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑡 = 𝑟 → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
| 80 | 79 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋))) |
| 81 | 80 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑟 − 𝑋)))) |
| 82 | 14 | dirkerre 46110 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℝ) |
| 83 | 4, 82 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℝ) |
| 84 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) |
| 85 | 83, 84 | fmptd 7134 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ) |
| 86 | 85 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ) |
| 87 | | fcompt 7153 |
. . . . . . . 8
⊢ (((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℝ ∧ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
| 88 | 86, 71, 87 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) = (𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))‘((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))‘𝑟)))) |
| 89 | 78, 81, 88 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)))) |
| 90 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) |
| 91 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → 𝑡 ∈ ℂ) |
| 92 | 11 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → 𝑋 ∈ ℂ) |
| 94 | 91, 93 | negsubd 11626 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → (𝑡 + -𝑋) = (𝑡 − 𝑋)) |
| 95 | 94 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℂ) → (𝑡 − 𝑋) = (𝑡 + -𝑋)) |
| 96 | 95 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋))) |
| 97 | 92 | negcld 11607 |
. . . . . . . . . . 11
⊢ (𝜑 → -𝑋 ∈ ℂ) |
| 98 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) = (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) |
| 99 | 98 | addccncf 24943 |
. . . . . . . . . . 11
⊢ (-𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
| 100 | 97, 99 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
| 101 | 96, 100 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 102 | 101 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 103 | | ioossre 13448 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
| 104 | | ax-resscn 11212 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 105 | 103, 104 | sstri 3993 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 106 | 105 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
| 107 | 104 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
| 108 | 90, 102, 106, 107, 69 | cncfmptssg 45886 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℝ)) |
| 109 | 83 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((𝐷‘𝑁)‘𝑠) ∈ ℂ) |
| 110 | 109, 84 | fmptd 7134 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ) |
| 111 | | ssid 4006 |
. . . . . . . . . 10
⊢ ℂ
⊆ ℂ |
| 112 | 14 | dirkerf 46112 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) |
| 113 | 4, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℝ) |
| 114 | 113 | feqmptd 6977 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷‘𝑁) = (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠))) |
| 115 | 14 | dirkercncf 46122 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) |
| 116 | 4, 115 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷‘𝑁) ∈ (ℝ–cn→ℝ)) |
| 117 | 114, 116 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ)) |
| 118 | | cncfcdm 24924 |
. . . . . . . . . 10
⊢ ((ℂ
⊆ ℂ ∧ (𝑠
∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℝ)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ)) |
| 119 | 111, 117,
118 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ) ↔ (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)):ℝ⟶ℂ)) |
| 120 | 110, 119 | mpbird 257 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
| 121 | 120 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∈ (ℝ–cn→ℂ)) |
| 122 | 108, 121 | cncfco 24933 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ ((𝐷‘𝑁)‘𝑠)) ∘ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑡 − 𝑋))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 123 | 89, 122 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 124 | 49, 123 | mulcncf 25480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 125 | 45, 124 | eqeltrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 126 | | cncff 24919 |
. . . . . . . 8
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 127 | 48, 126 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 128 | 113 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 129 | | elioore 13417 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
| 130 | 129 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
| 131 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 132 | 130, 131 | resubcld 11691 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 − 𝑋) ∈ ℝ) |
| 133 | 128, 132 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) ∈ ℝ) |
| 134 | 133 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) ∈ ℂ) |
| 135 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) |
| 136 | 134, 135 | fmptd 7134 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 137 | 136 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 138 | | eqid 2737 |
. . . . . . 7
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
| 139 | | fourierdlem101.r |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 140 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑄‘𝑖) → (𝑡 − 𝑋) = ((𝑄‘𝑖) − 𝑋)) |
| 141 | 140 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑄‘𝑖) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) |
| 142 | 141 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑄‘𝑖) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 143 | 142 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑡 = (𝑄‘𝑖)) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 144 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
| 145 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
| 146 | 145 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 147 | 146 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 148 | | velsn 4642 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {(𝑄‘𝑖)} ↔ 𝑡 = (𝑄‘𝑖)) |
| 149 | 148 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ {(𝑄‘𝑖)} ↔ ¬ 𝑡 = (𝑄‘𝑖)) |
| 150 | | elunnel2 4155 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ∧ ¬ 𝑡 ∈ {(𝑄‘𝑖)}) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 151 | 149, 150 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 152 | 151 | adantll 714 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 153 | 113 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 154 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 = (𝑄‘𝑖)) |
| 155 | 9 | ssriv 3987 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(-π[,]π) ⊆ ℝ |
| 156 | | fzossfz 13718 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0..^𝑀) ⊆
(0...𝑀) |
| 157 | 156, 41 | sselid 3981 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 158 | 40, 157 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
| 159 | 155, 158 | sselid 3981 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 160 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
| 161 | 154, 160 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
| 162 | 161 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
| 163 | 152, 65 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → 𝑡 ∈ ℝ) |
| 164 | 162, 163 | pm2.61dan 813 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑡 ∈ ℝ) |
| 165 | 11 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑋 ∈ ℝ) |
| 166 | 164, 165 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑡 − 𝑋) ∈ ℝ) |
| 167 | 153, 166 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 169 | 144, 147,
152, 168 | fvmptd 7023 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ ¬ 𝑡 = (𝑄‘𝑖)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 170 | 143, 169 | ifeqda 4562 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 171 | 170 | mpteq2dva 5242 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 172 | 113 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 173 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
| 174 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↔ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
| 175 | 173, 174 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
| 176 | 175 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)})) |
| 177 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 = (𝑄‘𝑖)) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 = (𝑄‘𝑖)) |
| 179 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → (𝑄‘𝑖) ∈ ℝ) |
| 180 | 178, 179 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ) |
| 181 | 180 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) |
| 182 | 181 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) |
| 183 | | pm3.44 962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) ∧ (𝑠 ∈ {(𝑄‘𝑖)} → 𝑠 ∈ ℝ)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ)) |
| 184 | 129, 182,
183 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝑄‘𝑖)}) → 𝑠 ∈ ℝ)) |
| 185 | 176, 184 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑠 ∈ ℝ) |
| 186 | 11 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑋 ∈ ℝ) |
| 187 | 185, 186 | resubcld 11691 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 − 𝑋) ∈ ℝ) |
| 188 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) = (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) |
| 189 | 187, 188 | fmptd 7134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℝ) |
| 190 | | fcompt 7153 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷‘𝑁):ℝ⟶ℝ ∧ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℝ) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)))) |
| 191 | 172, 189,
190 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)))) |
| 192 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) = (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) |
| 193 | 145 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧ 𝑠 = 𝑡) → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
| 194 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
| 195 | 192, 193,
194, 166 | fvmptd 7023 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡) = (𝑡 − 𝑋)) |
| 196 | 195 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 197 | 196 | mpteq2dva 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘((𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 198 | 191, 197 | eqtr2d 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)))) |
| 199 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) |
| 200 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
| 201 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
| 202 | 200, 201 | negsubd 11626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑠 + -𝑋) = (𝑠 − 𝑋)) |
| 203 | 202 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑠 − 𝑋) = (𝑠 + -𝑋)) |
| 204 | 203 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋))) |
| 205 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) |
| 206 | 205 | addccncf 24943 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
| 207 | 97, 206 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + -𝑋)) ∈ (ℂ–cn→ℂ)) |
| 208 | 204, 207 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 209 | 208 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑠 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 210 | 159 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
| 211 | 210 | snssd 4809 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘𝑖)} ⊆ ℂ) |
| 212 | 106, 211 | unssd 4192 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ) |
| 213 | 199, 209,
212, 107, 187 | cncfmptssg 45886 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋)) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℝ)) |
| 214 | 114, 120 | eqeltrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐷‘𝑁) ∈ (ℝ–cn→ℂ)) |
| 215 | 214 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐷‘𝑁) ∈ (ℝ–cn→ℂ)) |
| 216 | 213, 215 | cncfco 24933 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ)) |
| 217 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 218 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) = ((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
| 219 | 217 | cnfldtop 24804 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈ Top |
| 220 | | unicntop 24806 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 221 | 220 | restid 17478 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 222 | 219, 221 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 223 | 222 | eqcomi 2746 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 224 | 217, 218,
223 | cncfcn 24936 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ ∧ ℂ ⊆
ℂ) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
| 225 | 212, 111,
224 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
| 226 | 216, 225 | eleqtrd 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁) ∘ (𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ (𝑠 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
| 227 | 198, 226 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld))) |
| 228 | 217 | cnfldtopon 24803 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 229 | | resttopon 23169 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}))) |
| 230 | 228, 212,
229 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}))) |
| 231 | | cncnp 23288 |
. . . . . . . . . . . . 13
⊢
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
| 232 | 230, 228,
231 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
| 233 | 227, 232 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠))) |
| 234 | 233 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠)) |
| 235 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑄‘𝑖)) |
| 236 | | elsng 4640 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘𝑖) ∈ ℝ → ((𝑄‘𝑖) ∈ {(𝑄‘𝑖)} ↔ (𝑄‘𝑖) = (𝑄‘𝑖))) |
| 237 | 159, 236 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ {(𝑄‘𝑖)} ↔ (𝑄‘𝑖) = (𝑄‘𝑖))) |
| 238 | 235, 237 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ {(𝑄‘𝑖)}) |
| 239 | 238 | olcd 875 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘𝑖) ∈ {(𝑄‘𝑖)})) |
| 240 | | elun 4153 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↔ ((𝑄‘𝑖) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘𝑖) ∈ {(𝑄‘𝑖)})) |
| 241 | 239, 240 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) |
| 242 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑄‘𝑖) →
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
| 243 | 242 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑄‘𝑖) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖)))) |
| 244 | 243 | rspccva 3621 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘𝑠) ∧ (𝑄‘𝑖) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
| 245 | 234, 241,
244 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
| 246 | 171, 245 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖))) |
| 247 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
| 248 | 218, 217,
247, 137, 106, 210 | ellimc 25908 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘𝑖)) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)}) ↦ if(𝑡 = (𝑄‘𝑖), ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝑄‘𝑖)))) |
| 249 | 246, 248 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘𝑖))) |
| 250 | 127, 137,
138, 139, 249 | mullimcf 45638 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
| 251 | | fvres 6925 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
| 252 | 251 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
| 253 | 252 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
| 254 | 253 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)))) |
| 255 | 254 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
| 256 | 250, 255 | eleqtrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖))) |
| 257 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
| 258 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → 𝑠 = 𝑡) |
| 259 | 258 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → (𝑠 − 𝑋) = (𝑡 − 𝑋)) |
| 260 | 259 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 261 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 262 | 113 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 263 | 262, 69 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 264 | 257, 260,
261, 263 | fvmptd 7023 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 265 | 264 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 266 | 265 | mpteq2dva 5242 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
| 267 | 266 | oveq1d 7446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖))) |
| 268 | 256, 267 | eleqtrd 2843 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖))) |
| 269 | 45 | eqcomd 2743 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 270 | 269 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 271 | 268, 270 | eleqtrd 2843 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · ((𝐷‘𝑁)‘((𝑄‘𝑖) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 272 | | fourierdlem101.l |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 273 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 274 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → (𝑡 − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 275 | 274 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝑄‘(𝑖 + 1)) − 𝑋) = (𝑡 − 𝑋)) |
| 276 | 275 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 277 | 273, 276 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 278 | 277 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 279 | | iffalse 4534 |
. . . . . . . . . . 11
⊢ (¬
𝑡 = (𝑄‘(𝑖 + 1)) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) |
| 280 | 279 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) |
| 281 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))) |
| 282 | 146 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = 𝑡) → ((𝐷‘𝑁)‘(𝑠 − 𝑋)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 283 | | elun 4153 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})) |
| 284 | 283 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ 𝑡 ∈ {(𝑄‘(𝑖 + 1))})) |
| 285 | 284 | orcomd 872 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 286 | 285 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 287 | | velsn 4642 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑡 = (𝑄‘(𝑖 + 1))) |
| 288 | 287 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ {(𝑄‘(𝑖 + 1))} ↔ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) |
| 289 | 288 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ (¬
𝑡 = (𝑄‘(𝑖 + 1)) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}) |
| 290 | 289 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))}) |
| 291 | | pm2.53 852 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ {(𝑄‘(𝑖 + 1))} ∨ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (¬ 𝑡 ∈ {(𝑄‘(𝑖 + 1))} → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 292 | 286, 290,
291 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 293 | 172 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 294 | 292, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
| 295 | 11 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → 𝑋 ∈ ℝ) |
| 296 | 294, 295 | resubcld 11691 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → (𝑡 − 𝑋) ∈ ℝ) |
| 297 | 293, 296 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 298 | 281, 282,
292, 297 | fvmptd 7023 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 299 | 280, 298 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧ ¬ 𝑡 = (𝑄‘(𝑖 + 1))) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 300 | 278, 299 | pm2.61dan 813 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡)) = ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 301 | 300 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 302 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) |
| 303 | 104 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 304 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
| 305 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ ℝ) |
| 306 | 304, 305 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (𝑡 − 𝑋) ∈ ℝ) |
| 307 | 90, 101, 303, 303, 306 | cncfmptssg 45886 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (𝑡 − 𝑋)) ∈ (ℝ–cn→ℝ)) |
| 308 | 307, 214 | cncfcompt 45898 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (ℝ–cn→ℂ)) |
| 309 | 308 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℝ ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ (ℝ–cn→ℂ)) |
| 310 | 103 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
| 311 | | fzofzp1 13803 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 312 | 311 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 313 | 40, 312 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
(-π[,]π)) |
| 314 | 155, 313 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 315 | 314 | snssd 4809 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℝ) |
| 316 | 310, 315 | unssd 4192 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℝ) |
| 317 | 111 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℂ ⊆
ℂ) |
| 318 | 172 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝐷‘𝑁):ℝ⟶ℝ) |
| 319 | 316 | sselda 3983 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑡 ∈ ℝ) |
| 320 | 11 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → 𝑋 ∈ ℝ) |
| 321 | 319, 320 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡 − 𝑋) ∈ ℝ) |
| 322 | 318, 321 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℝ) |
| 323 | 322 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) ∈ ℂ) |
| 324 | 302, 309,
316, 317, 323 | cncfmptssg 45886 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈ ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ)) |
| 325 | 155, 104 | sstri 3993 |
. . . . . . . . . . . . . . 15
⊢
(-π[,]π) ⊆ ℂ |
| 326 | 325, 313 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 327 | 326 | snssd 4809 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {(𝑄‘(𝑖 + 1))} ⊆ ℂ) |
| 328 | 106, 327 | unssd 4192 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ) |
| 329 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
| 330 | 217, 329,
223 | cncfcn 24936 |
. . . . . . . . . . . 12
⊢
(((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ ∧ ℂ
⊆ ℂ) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
| 331 | 328, 111,
330 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
| 332 | 324, 331 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld))) |
| 333 | | resttopon 23169 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))) |
| 334 | 228, 328,
333 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))) |
| 335 | | cncnp 23288 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∈ (TopOn‘(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
| 336 | 334, 228,
335 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
(((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) Cn
(TopOpen‘ℂfld)) ↔ ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)))) |
| 337 | 332, 336 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))):(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})⟶ℂ ∧ ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠))) |
| 338 | 337 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑠 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠)) |
| 339 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1))) |
| 340 | | elsng 4640 |
. . . . . . . . . . . 12
⊢ ((𝑄‘(𝑖 + 1)) ∈ ℝ → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))) |
| 341 | 314, 340 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))} ↔ (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑖 + 1)))) |
| 342 | 339, 341 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))}) |
| 343 | 342 | olcd 875 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))})) |
| 344 | | elun 4153 |
. . . . . . . . 9
⊢ ((𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↔ ((𝑄‘(𝑖 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∨ (𝑄‘(𝑖 + 1)) ∈ {(𝑄‘(𝑖 + 1))})) |
| 345 | 343, 344 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
| 346 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑄‘(𝑖 + 1)) →
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) = ((((TopOpen‘ℂfld)
↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
| 347 | 346 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑠 = (𝑄‘(𝑖 + 1)) → ((𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))) |
| 348 | 347 | rspccva 3621 |
. . . . . . . 8
⊢
((∀𝑠 ∈
(((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})(𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘𝑠) ∧ (𝑄‘(𝑖 + 1)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
| 349 | 338, 345,
348 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ ((𝐷‘𝑁)‘(𝑡 − 𝑋))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
| 350 | 301, 349 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1)))) |
| 351 | | eqid 2737 |
. . . . . . 7
⊢ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) |
| 352 | 329, 217,
351, 137, 106, 326 | ellimc 25908 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘(𝑖 + 1))) ↔ (𝑡 ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}) ↦ if(𝑡 = (𝑄‘(𝑖 + 1)), ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)), ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) ∈
((((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝑄‘(𝑖 + 1))))) |
| 353 | 350, 352 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋))) limℂ (𝑄‘(𝑖 + 1)))) |
| 354 | 127, 137,
138, 272, 353 | mullimcf 45638 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘(𝑖 + 1)))) |
| 355 | 266, 254,
45 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 356 | 355 | oveq1d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) · ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐷‘𝑁)‘(𝑠 − 𝑋)))‘𝑡))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 357 | 354, 356 | eleqtrd 2843 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · ((𝐷‘𝑁)‘((𝑄‘(𝑖 + 1)) − 𝑋))) ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 358 | 24, 27, 28, 29, 11, 30, 125, 271, 357 | fourierdlem93 46214 |
. 2
⊢ (𝜑 → ∫(-π[,]π)(𝐺‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠) |
| 359 | 19 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))))) |
| 360 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑡 = (𝑋 + 𝑠) → (𝐹‘𝑡) = (𝐹‘(𝑋 + 𝑠))) |
| 361 | 360 | oveq1d 7446 |
. . . . . 6
⊢ (𝑡 = (𝑋 + 𝑠) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 362 | 361 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) |
| 363 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑡 = (𝑋 + 𝑠) → (𝑡 − 𝑋) = ((𝑋 + 𝑠) − 𝑋)) |
| 364 | 92 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℂ) |
| 365 | 33, 11 | resubcld 11691 |
. . . . . . . . . . . 12
⊢ (𝜑 → (-π − 𝑋) ∈
ℝ) |
| 366 | 365 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ∈ ℝ) |
| 367 | 36, 11 | resubcld 11691 |
. . . . . . . . . . . 12
⊢ (𝜑 → (π − 𝑋) ∈
ℝ) |
| 368 | 367 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (π − 𝑋) ∈ ℝ) |
| 369 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) |
| 370 | | eliccre 45518 |
. . . . . . . . . . 11
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ ∧ 𝑠
∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
| 371 | 366, 368,
369, 370 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℝ) |
| 372 | 371 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ∈ ℂ) |
| 373 | 364, 372 | pncan2d 11622 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝑋 + 𝑠) − 𝑋) = 𝑠) |
| 374 | 363, 373 | sylan9eqr 2799 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → (𝑡 − 𝑋) = 𝑠) |
| 375 | 374 | fveq2d 6910 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐷‘𝑁)‘(𝑡 − 𝑋)) = ((𝐷‘𝑁)‘𝑠)) |
| 376 | 375 | oveq2d 7447 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
| 377 | 362, 376 | eqtrd 2777 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) ∧ 𝑡 = (𝑋 + 𝑠)) → ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
| 378 | 7 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ∈
ℝ) |
| 379 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℝ) |
| 380 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑋 ∈ ℝ) |
| 381 | 380, 371 | readdcld 11290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
| 382 | 33 | recnd 11289 |
. . . . . . . . 9
⊢ (𝜑 → -π ∈
ℂ) |
| 383 | 92, 382 | pncan3d 11623 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 + (-π − 𝑋)) = -π) |
| 384 | 383 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → -π = (𝑋 + (-π − 𝑋))) |
| 385 | 384 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π = (𝑋 + (-π − 𝑋))) |
| 386 | | elicc2 13452 |
. . . . . . . . . 10
⊢ (((-π
− 𝑋) ∈ ℝ
∧ (π − 𝑋)
∈ ℝ) → (𝑠
∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋)))) |
| 387 | 366, 368,
386 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋)))) |
| 388 | 369, 387 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑠 ∈ ℝ ∧ (-π − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (π − 𝑋))) |
| 389 | 388 | simp2d 1144 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (-π − 𝑋) ≤ 𝑠) |
| 390 | 366, 371,
380, 389 | leadd2dd 11878 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (-π − 𝑋)) ≤ (𝑋 + 𝑠)) |
| 391 | 385, 390 | eqbrtrd 5165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → -π ≤ (𝑋 + 𝑠)) |
| 392 | 388 | simp3d 1145 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝑠 ≤ (π − 𝑋)) |
| 393 | 371, 368,
380, 392 | leadd2dd 11878 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ (𝑋 + (π − 𝑋))) |
| 394 | | picn 26501 |
. . . . . . . 8
⊢ π
∈ ℂ |
| 395 | 394 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → π ∈
ℂ) |
| 396 | 364, 395 | pncan3d 11623 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + (π − 𝑋)) = π) |
| 397 | 393, 396 | breqtrd 5169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ≤ π) |
| 398 | 378, 379,
381, 391, 397 | eliccd 45517 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝑋 + 𝑠) ∈ (-π[,]π)) |
| 399 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → 𝐹:(-π[,]π)⟶ℂ) |
| 400 | 399, 398 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 401 | 371, 109 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐷‘𝑁)‘𝑠) ∈ ℂ) |
| 402 | 400, 401 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) ∈ ℂ) |
| 403 | 359, 377,
398, 402 | fvmptd 7023 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ((-π − 𝑋)[,](π − 𝑋))) → (𝐺‘(𝑋 + 𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠))) |
| 404 | 403 | itgeq2dv 25817 |
. 2
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐺‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) |
| 405 | 23, 358, 404 | 3eqtrd 2781 |
1
⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) |