| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvmptconst | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmptconst.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptconst.a | ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| dvmptconst.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvmptconst | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptconst.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmptconst.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℂ) |
| 4 | 0red 11183 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℝ) | |
| 5 | 1, 2 | dvmptc 25868 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐵)) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 6 | eqid 2730 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 7 | 6 | cnfldtopon 24676 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 9 | ax-resscn 11131 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 10 | sseq1 3974 | . . . . . . 7 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 11 | 9, 10 | mpbiri 258 | . . . . . 6 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 12 | eqimss 4007 | . . . . . 6 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 13 | 11, 12 | pm3.2i 470 | . . . . 5 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
| 14 | elpri 4615 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 15 | 1, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
| 16 | pm3.44 961 | . . . . 5 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
| 17 | 13, 15, 16 | mpsyl 68 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 18 | resttopon 23054 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 19 | 8, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 20 | dvmptconst.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 21 | toponss 22820 | . . 3 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴 ⊆ 𝑆) | |
| 22 | 19, 20, 21 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| 23 | eqid 2730 | . 2 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 24 | 1, 3, 4, 5, 22, 23, 6, 20 | dvmptres 25873 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 {cpr 4593 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 ↾t crest 17389 TopOpenctopn 17390 ℂfldccnfld 21270 TopOnctopon 22803 D cdv 25770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fi 9368 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-icc 13319 df-fz 13475 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-rest 17391 df-topn 17392 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-cncf 24777 df-limc 25773 df-dv 25774 |
| This theorem is referenced by: dvxpaek 45931 dvnmptconst 45932 dvnxpaek 45933 dvnmul 45934 dvmptfprod 45936 fourierdlem28 46126 fourierdlem57 46154 fourierdlem59 46156 fourierdlem68 46165 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |