Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvmptconst | Structured version Visualization version GIF version |
Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvmptconst.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptconst.a | ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
dvmptconst.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
dvmptconst | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptconst.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvmptconst.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | 2 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℂ) |
4 | 0red 10687 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℝ) | |
5 | 1, 2 | dvmptc 24662 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐵)) = (𝑥 ∈ 𝑆 ↦ 0)) |
6 | eqid 2758 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
7 | 6 | cnfldtopon 23489 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
9 | ax-resscn 10637 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
10 | sseq1 3919 | . . . . . . 7 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
11 | 9, 10 | mpbiri 261 | . . . . . 6 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
12 | eqimss 3950 | . . . . . 6 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
13 | 11, 12 | pm3.2i 474 | . . . . 5 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
14 | elpri 4547 | . . . . . 6 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
15 | 1, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
16 | pm3.44 957 | . . . . 5 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
17 | 13, 15, 16 | mpsyl 68 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
18 | resttopon 21866 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
19 | 8, 17, 18 | syl2anc 587 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
20 | dvmptconst.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
21 | toponss 21632 | . . 3 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴 ⊆ 𝑆) | |
22 | 19, 20, 21 | syl2anc 587 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
23 | eqid 2758 | . 2 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
24 | 1, 3, 4, 5, 22, 23, 6, 20 | dvmptres 24667 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 {cpr 4527 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 ℝcr 10579 0cc0 10580 ↾t crest 16757 TopOpenctopn 16758 ℂfldccnfld 20171 TopOnctopon 21615 D cdv 24567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fi 8913 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-icc 12791 df-fz 12945 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-mulr 16642 df-starv 16643 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-rest 16759 df-topn 16760 df-topgen 16780 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-fbas 20168 df-fg 20169 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cld 21724 df-ntr 21725 df-cls 21726 df-nei 21803 df-lp 21841 df-perf 21842 df-cn 21932 df-cnp 21933 df-haus 22020 df-fil 22551 df-fm 22643 df-flim 22644 df-flf 22645 df-xms 23027 df-ms 23028 df-cncf 23584 df-limc 24570 df-dv 24571 |
This theorem is referenced by: dvxpaek 42976 dvnmptconst 42977 dvnxpaek 42978 dvnmul 42979 dvmptfprod 42981 fourierdlem28 43171 fourierdlem57 43199 fourierdlem59 43201 fourierdlem68 43210 fouriersw 43267 |
Copyright terms: Public domain | W3C validator |