Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptconst Structured version   Visualization version   GIF version

Theorem dvmptconst 44404
Description: Function-builder for derivative: derivative of a constant. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptconst.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptconst.a (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvmptconst.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
dvmptconst (𝜑 → (𝑆 D (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆   𝜑,𝑥

Proof of Theorem dvmptconst
StepHypRef Expression
1 dvmptconst.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmptconst.b . . 3 (𝜑𝐵 ∈ ℂ)
32adantr 481 . 2 ((𝜑𝑥𝑆) → 𝐵 ∈ ℂ)
4 0red 11199 . 2 ((𝜑𝑥𝑆) → 0 ∈ ℝ)
51, 2dvmptc 25404 . 2 (𝜑 → (𝑆 D (𝑥𝑆𝐵)) = (𝑥𝑆 ↦ 0))
6 eqid 2731 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldtopon 24228 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
87a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
9 ax-resscn 11149 . . . . . . 7 ℝ ⊆ ℂ
10 sseq1 4003 . . . . . . 7 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
119, 10mpbiri 257 . . . . . 6 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
12 eqimss 4036 . . . . . 6 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1311, 12pm3.2i 471 . . . . 5 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
14 elpri 4644 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
151, 14syl 17 . . . . 5 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
16 pm3.44 958 . . . . 5 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
1713, 15, 16mpsyl 68 . . . 4 (𝜑𝑆 ⊆ ℂ)
18 resttopon 22594 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
198, 17, 18syl2anc 584 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
20 dvmptconst.a . . 3 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
21 toponss 22358 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴𝑆)
2219, 20, 21syl2anc 584 . 2 (𝜑𝐴𝑆)
23 eqid 2731 . 2 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
241, 3, 4, 5, 22, 23, 6, 20dvmptres 25409 1 (𝜑 → (𝑆 D (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wss 3944  {cpr 4624  cmpt 5224  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  t crest 17348  TopOpenctopn 17349  fldccnfld 20878  TopOnctopon 22341   D cdv 25309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fi 9388  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-icc 13313  df-fz 13467  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17127  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17350  df-topn 17351  df-topgen 17371  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-haus 22748  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-cncf 24323  df-limc 25312  df-dv 25313
This theorem is referenced by:  dvxpaek  44429  dvnmptconst  44430  dvnxpaek  44431  dvnmul  44432  dvmptfprod  44434  fourierdlem28  44624  fourierdlem57  44652  fourierdlem59  44654  fourierdlem68  44663  fouriersw  44720
  Copyright terms: Public domain W3C validator