Step | Hyp | Ref
| Expression |
1 | | ssexg 5247 |
. . 3
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ Fin) → 𝐵 ∈ V) |
2 | 1 | ancoms 459 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
3 | | sseq1 3946 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∈ Fin ↔ 𝐵 ∈ Fin)) |
5 | 3, 4 | imbi12d 345 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin) ↔ (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin))) |
6 | 5 | imbi2d 341 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ Fin → (𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin)) ↔ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin)))) |
7 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ∅)) |
8 | 7 | imbi1d 342 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ (𝑏 ⊆ ∅ → 𝑏 ∈ Fin))) |
9 | 8 | albidv 1923 |
. . . . . 6
⊢ (𝑥 = ∅ → (∀𝑏(𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ ∅ → 𝑏 ∈ Fin))) |
10 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝑦)) |
11 | 10 | imbi1d 342 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ (𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin))) |
12 | 11 | albidv 1923 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∀𝑏(𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin))) |
13 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ (𝑦 ∪ {𝑧}))) |
14 | 13 | imbi1d 342 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ (𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))) |
15 | 14 | albidv 1923 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏(𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))) |
16 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝐴)) |
17 | 16 | imbi1d 342 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ (𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin))) |
18 | 17 | albidv 1923 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∀𝑏(𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin))) |
19 | | ss0 4332 |
. . . . . . . 8
⊢ (𝑏 ⊆ ∅ → 𝑏 = ∅) |
20 | | 0fin 8954 |
. . . . . . . 8
⊢ ∅
∈ Fin |
21 | 19, 20 | eqeltrdi 2847 |
. . . . . . 7
⊢ (𝑏 ⊆ ∅ → 𝑏 ∈ Fin) |
22 | 21 | ax-gen 1798 |
. . . . . 6
⊢
∀𝑏(𝑏 ⊆ ∅ → 𝑏 ∈ Fin) |
23 | | sseq1 3946 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑐 → (𝑏 ⊆ 𝑦 ↔ 𝑐 ⊆ 𝑦)) |
24 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑐 → (𝑏 ∈ Fin ↔ 𝑐 ∈ Fin)) |
25 | 23, 24 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑐 → ((𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) ↔ (𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin))) |
26 | 25 | cbvalvw 2039 |
. . . . . . . . 9
⊢
(∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) ↔ ∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin)) |
27 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → ∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin)) |
28 | | snssi 4741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑏 → {𝑧} ⊆ 𝑏) |
29 | | undif 4415 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑧} ⊆ 𝑏 ↔ ({𝑧} ∪ (𝑏 ∖ {𝑧})) = 𝑏) |
30 | 28, 29 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑏 → ({𝑧} ∪ (𝑏 ∖ {𝑧})) = 𝑏) |
31 | | uncom 4087 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑧} ∪ (𝑏 ∖ {𝑧})) = ((𝑏 ∖ {𝑧}) ∪ {𝑧}) |
32 | 30, 31 | eqtr3di 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑏 → 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) |
33 | | uncom 4087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∪ {𝑧}) = ({𝑧} ∪ 𝑦) |
34 | 33 | sseq2i 3950 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ⊆ (𝑦 ∪ {𝑧}) ↔ 𝑏 ⊆ ({𝑧} ∪ 𝑦)) |
35 | | ssundif 4418 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ (𝑏 ∖ {𝑧}) ⊆ 𝑦) |
36 | 34, 35 | sylbb 218 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ⊆ (𝑦 ∪ {𝑧}) → (𝑏 ∖ {𝑧}) ⊆ 𝑦) |
37 | 32, 36 | anim12ci 614 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}))) |
38 | 37 | 3adant1 1129 |
. . . . . . . . . . . . 13
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}))) |
39 | | 3anass 1094 |
. . . . . . . . . . . . 13
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) ↔ (∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ ((𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})))) |
40 | 27, 38, 39 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → (∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}))) |
41 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑏 ∈ V |
42 | 41 | difexi 5252 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∖ {𝑧}) ∈ V |
43 | | sseq1 3946 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑏 ∖ {𝑧}) → (𝑐 ⊆ 𝑦 ↔ (𝑏 ∖ {𝑧}) ⊆ 𝑦)) |
44 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑏 ∖ {𝑧}) → (𝑐 ∈ Fin ↔ (𝑏 ∖ {𝑧}) ∈ Fin)) |
45 | 43, 44 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑏 ∖ {𝑧}) → ((𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ↔ ((𝑏 ∖ {𝑧}) ⊆ 𝑦 → (𝑏 ∖ {𝑧}) ∈ Fin))) |
46 | 42, 45 | spcv 3544 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦 → (𝑏 ∖ {𝑧}) ∈ Fin)) |
47 | 46 | imp 407 |
. . . . . . . . . . . . . 14
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦) → (𝑏 ∖ {𝑧}) ∈ Fin) |
48 | | snfi 8834 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ Fin |
49 | | unfi 8955 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 ∖ {𝑧}) ∈ Fin ∧ {𝑧} ∈ Fin) → ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin) |
50 | 47, 48, 49 | sylancl 586 |
. . . . . . . . . . . . 13
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦) → ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin) |
51 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}) → (𝑏 ∈ Fin ↔ ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin)) |
52 | 51 | biimparc 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) → 𝑏 ∈ Fin) |
53 | 50, 52 | stoic3 1779 |
. . . . . . . . . . . 12
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦 ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) → 𝑏 ∈ Fin) |
54 | 40, 53 | syl 17 |
. . . . . . . . . . 11
⊢
((∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) |
55 | 54 | 3expib 1121 |
. . . . . . . . . 10
⊢
(∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) → ((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) |
56 | 55 | alrimiv 1930 |
. . . . . . . . 9
⊢
(∀𝑐(𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin) → ∀𝑏((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) |
57 | 26, 56 | sylbi 216 |
. . . . . . . 8
⊢
(∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) → ∀𝑏((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) |
58 | | disjsn 4647 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑏) |
59 | | disjssun 4401 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∩ {𝑧}) = ∅ → (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ 𝑏 ⊆ 𝑦)) |
60 | 58, 59 | sylbir 234 |
. . . . . . . . . . . 12
⊢ (¬
𝑧 ∈ 𝑏 → (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ 𝑏 ⊆ 𝑦)) |
61 | 60 | biimpa 477 |
. . . . . . . . . . 11
⊢ ((¬
𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ({𝑧} ∪ 𝑦)) → 𝑏 ⊆ 𝑦) |
62 | 34, 61 | sylan2b 594 |
. . . . . . . . . 10
⊢ ((¬
𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ⊆ 𝑦) |
63 | 62 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) → ((¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) |
64 | 63 | alimi 1814 |
. . . . . . . 8
⊢
(∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) → ∀𝑏((¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) |
65 | | exmid 892 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏) |
66 | 65 | jctl 524 |
. . . . . . . . . . 11
⊢ (𝑏 ⊆ (𝑦 ∪ {𝑧}) → ((𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏) ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧}))) |
67 | | andir 1006 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏) ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) ↔ ((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})))) |
68 | 66, 67 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑏 ⊆ (𝑦 ∪ {𝑧}) → ((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})))) |
69 | | pm3.44 957 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ((¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → (((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧}))) → 𝑏 ∈ Fin)) |
70 | 68, 69 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ((¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → (𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)) |
71 | 70 | alanimi 1819 |
. . . . . . . 8
⊢
((∀𝑏((𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ∀𝑏((¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)) |
72 | 57, 64, 71 | syl2anc 584 |
. . . . . . 7
⊢
(∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)) |
73 | 72 | a1i 11 |
. . . . . 6
⊢ (𝑦 ∈ Fin →
(∀𝑏(𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))) |
74 | 9, 12, 15, 18, 22, 73 | findcard2 8947 |
. . . . 5
⊢ (𝐴 ∈ Fin → ∀𝑏(𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin)) |
75 | 74 | 19.21bi 2182 |
. . . 4
⊢ (𝐴 ∈ Fin → (𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin)) |
76 | 6, 75 | vtoclg 3505 |
. . 3
⊢ (𝐵 ∈ V → (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin))) |
77 | 76 | impd 411 |
. 2
⊢ (𝐵 ∈ V → ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin)) |
78 | 2, 77 | mpcom 38 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |