MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfi Structured version   Visualization version   GIF version

Theorem ssfi 8918
Description: A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5283, see ssfiALT 8919. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5283. (Revised by BTernaryTau, 12-Aug-2024.)
Assertion
Ref Expression
ssfi ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)

Proof of Theorem ssfi
Dummy variables 𝑏 𝑥 𝑦 𝑧 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssexg 5242 . . 3 ((𝐵𝐴𝐴 ∈ Fin) → 𝐵 ∈ V)
21ancoms 458 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ V)
3 sseq1 3942 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝐴𝐵𝐴))
4 eleq1 2826 . . . . . 6 (𝑏 = 𝐵 → (𝑏 ∈ Fin ↔ 𝐵 ∈ Fin))
53, 4imbi12d 344 . . . . 5 (𝑏 = 𝐵 → ((𝑏𝐴𝑏 ∈ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin)))
65imbi2d 340 . . . 4 (𝑏 = 𝐵 → ((𝐴 ∈ Fin → (𝑏𝐴𝑏 ∈ Fin)) ↔ (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin))))
7 sseq2 3943 . . . . . . . 8 (𝑥 = ∅ → (𝑏𝑥𝑏 ⊆ ∅))
87imbi1d 341 . . . . . . 7 (𝑥 = ∅ → ((𝑏𝑥𝑏 ∈ Fin) ↔ (𝑏 ⊆ ∅ → 𝑏 ∈ Fin)))
98albidv 1924 . . . . . 6 (𝑥 = ∅ → (∀𝑏(𝑏𝑥𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ ∅ → 𝑏 ∈ Fin)))
10 sseq2 3943 . . . . . . . 8 (𝑥 = 𝑦 → (𝑏𝑥𝑏𝑦))
1110imbi1d 341 . . . . . . 7 (𝑥 = 𝑦 → ((𝑏𝑥𝑏 ∈ Fin) ↔ (𝑏𝑦𝑏 ∈ Fin)))
1211albidv 1924 . . . . . 6 (𝑥 = 𝑦 → (∀𝑏(𝑏𝑥𝑏 ∈ Fin) ↔ ∀𝑏(𝑏𝑦𝑏 ∈ Fin)))
13 sseq2 3943 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏𝑥𝑏 ⊆ (𝑦 ∪ {𝑧})))
1413imbi1d 341 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑏𝑥𝑏 ∈ Fin) ↔ (𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)))
1514albidv 1924 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏(𝑏𝑥𝑏 ∈ Fin) ↔ ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)))
16 sseq2 3943 . . . . . . . 8 (𝑥 = 𝐴 → (𝑏𝑥𝑏𝐴))
1716imbi1d 341 . . . . . . 7 (𝑥 = 𝐴 → ((𝑏𝑥𝑏 ∈ Fin) ↔ (𝑏𝐴𝑏 ∈ Fin)))
1817albidv 1924 . . . . . 6 (𝑥 = 𝐴 → (∀𝑏(𝑏𝑥𝑏 ∈ Fin) ↔ ∀𝑏(𝑏𝐴𝑏 ∈ Fin)))
19 ss0 4329 . . . . . . . 8 (𝑏 ⊆ ∅ → 𝑏 = ∅)
20 0fin 8916 . . . . . . . 8 ∅ ∈ Fin
2119, 20eqeltrdi 2847 . . . . . . 7 (𝑏 ⊆ ∅ → 𝑏 ∈ Fin)
2221ax-gen 1799 . . . . . 6 𝑏(𝑏 ⊆ ∅ → 𝑏 ∈ Fin)
23 sseq1 3942 . . . . . . . . . . 11 (𝑏 = 𝑐 → (𝑏𝑦𝑐𝑦))
24 eleq1w 2821 . . . . . . . . . . 11 (𝑏 = 𝑐 → (𝑏 ∈ Fin ↔ 𝑐 ∈ Fin))
2523, 24imbi12d 344 . . . . . . . . . 10 (𝑏 = 𝑐 → ((𝑏𝑦𝑏 ∈ Fin) ↔ (𝑐𝑦𝑐 ∈ Fin)))
2625cbvalvw 2040 . . . . . . . . 9 (∀𝑏(𝑏𝑦𝑏 ∈ Fin) ↔ ∀𝑐(𝑐𝑦𝑐 ∈ Fin))
27 simp1 1134 . . . . . . . . . . . . 13 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → ∀𝑐(𝑐𝑦𝑐 ∈ Fin))
28 snssi 4738 . . . . . . . . . . . . . . . . 17 (𝑧𝑏 → {𝑧} ⊆ 𝑏)
29 undif 4412 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ 𝑏 ↔ ({𝑧} ∪ (𝑏 ∖ {𝑧})) = 𝑏)
3028, 29sylib 217 . . . . . . . . . . . . . . . 16 (𝑧𝑏 → ({𝑧} ∪ (𝑏 ∖ {𝑧})) = 𝑏)
31 uncom 4083 . . . . . . . . . . . . . . . 16 ({𝑧} ∪ (𝑏 ∖ {𝑧})) = ((𝑏 ∖ {𝑧}) ∪ {𝑧})
3230, 31eqtr3di 2794 . . . . . . . . . . . . . . 15 (𝑧𝑏𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}))
33 uncom 4083 . . . . . . . . . . . . . . . . 17 (𝑦 ∪ {𝑧}) = ({𝑧} ∪ 𝑦)
3433sseq2i 3946 . . . . . . . . . . . . . . . 16 (𝑏 ⊆ (𝑦 ∪ {𝑧}) ↔ 𝑏 ⊆ ({𝑧} ∪ 𝑦))
35 ssundif 4415 . . . . . . . . . . . . . . . 16 (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ (𝑏 ∖ {𝑧}) ⊆ 𝑦)
3634, 35sylbb 218 . . . . . . . . . . . . . . 15 (𝑏 ⊆ (𝑦 ∪ {𝑧}) → (𝑏 ∖ {𝑧}) ⊆ 𝑦)
3732, 36anim12ci 613 . . . . . . . . . . . . . 14 ((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})))
38373adant1 1128 . . . . . . . . . . . . 13 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})))
39 3anass 1093 . . . . . . . . . . . . 13 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) ↔ (∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ ((𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}))))
4027, 38, 39sylanbrc 582 . . . . . . . . . . . 12 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → (∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})))
41 vex 3426 . . . . . . . . . . . . . . . . 17 𝑏 ∈ V
4241difexi 5247 . . . . . . . . . . . . . . . 16 (𝑏 ∖ {𝑧}) ∈ V
43 sseq1 3942 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑏 ∖ {𝑧}) → (𝑐𝑦 ↔ (𝑏 ∖ {𝑧}) ⊆ 𝑦))
44 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑏 ∖ {𝑧}) → (𝑐 ∈ Fin ↔ (𝑏 ∖ {𝑧}) ∈ Fin))
4543, 44imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑏 ∖ {𝑧}) → ((𝑐𝑦𝑐 ∈ Fin) ↔ ((𝑏 ∖ {𝑧}) ⊆ 𝑦 → (𝑏 ∖ {𝑧}) ∈ Fin)))
4642, 45spcv 3534 . . . . . . . . . . . . . . 15 (∀𝑐(𝑐𝑦𝑐 ∈ Fin) → ((𝑏 ∖ {𝑧}) ⊆ 𝑦 → (𝑏 ∖ {𝑧}) ∈ Fin))
4746imp 406 . . . . . . . . . . . . . 14 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦) → (𝑏 ∖ {𝑧}) ∈ Fin)
48 snfi 8788 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
49 unfi 8917 . . . . . . . . . . . . . 14 (((𝑏 ∖ {𝑧}) ∈ Fin ∧ {𝑧} ∈ Fin) → ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin)
5047, 48, 49sylancl 585 . . . . . . . . . . . . 13 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦) → ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin)
51 eleq1 2826 . . . . . . . . . . . . . 14 (𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧}) → (𝑏 ∈ Fin ↔ ((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin))
5251biimparc 479 . . . . . . . . . . . . 13 ((((𝑏 ∖ {𝑧}) ∪ {𝑧}) ∈ Fin ∧ 𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) → 𝑏 ∈ Fin)
5350, 52stoic3 1780 . . . . . . . . . . . 12 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ (𝑏 ∖ {𝑧}) ⊆ 𝑦𝑏 = ((𝑏 ∖ {𝑧}) ∪ {𝑧})) → 𝑏 ∈ Fin)
5440, 53syl 17 . . . . . . . . . . 11 ((∀𝑐(𝑐𝑦𝑐 ∈ Fin) ∧ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)
55543expib 1120 . . . . . . . . . 10 (∀𝑐(𝑐𝑦𝑐 ∈ Fin) → ((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin))
5655alrimiv 1931 . . . . . . . . 9 (∀𝑐(𝑐𝑦𝑐 ∈ Fin) → ∀𝑏((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin))
5726, 56sylbi 216 . . . . . . . 8 (∀𝑏(𝑏𝑦𝑏 ∈ Fin) → ∀𝑏((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin))
58 disjsn 4644 . . . . . . . . . . . . 13 ((𝑏 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑏)
59 disjssun 4398 . . . . . . . . . . . . 13 ((𝑏 ∩ {𝑧}) = ∅ → (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ 𝑏𝑦))
6058, 59sylbir 234 . . . . . . . . . . . 12 𝑧𝑏 → (𝑏 ⊆ ({𝑧} ∪ 𝑦) ↔ 𝑏𝑦))
6160biimpa 476 . . . . . . . . . . 11 ((¬ 𝑧𝑏𝑏 ⊆ ({𝑧} ∪ 𝑦)) → 𝑏𝑦)
6234, 61sylan2b 593 . . . . . . . . . 10 ((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏𝑦)
6362imim1i 63 . . . . . . . . 9 ((𝑏𝑦𝑏 ∈ Fin) → ((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin))
6463alimi 1815 . . . . . . . 8 (∀𝑏(𝑏𝑦𝑏 ∈ Fin) → ∀𝑏((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin))
65 exmid 891 . . . . . . . . . . . 12 (𝑧𝑏 ∨ ¬ 𝑧𝑏)
6665jctl 523 . . . . . . . . . . 11 (𝑏 ⊆ (𝑦 ∪ {𝑧}) → ((𝑧𝑏 ∨ ¬ 𝑧𝑏) ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})))
67 andir 1005 . . . . . . . . . . 11 (((𝑧𝑏 ∨ ¬ 𝑧𝑏) ∧ 𝑏 ⊆ (𝑦 ∪ {𝑧})) ↔ ((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧}))))
6866, 67sylib 217 . . . . . . . . . 10 (𝑏 ⊆ (𝑦 ∪ {𝑧}) → ((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧}))))
69 pm3.44 956 . . . . . . . . . 10 ((((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → (((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) ∨ (¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧}))) → 𝑏 ∈ Fin))
7068, 69syl5 34 . . . . . . . . 9 ((((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → (𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))
7170alanimi 1820 . . . . . . . 8 ((∀𝑏((𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin) ∧ ∀𝑏((¬ 𝑧𝑏𝑏 ⊆ (𝑦 ∪ {𝑧})) → 𝑏 ∈ Fin)) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))
7257, 64, 71syl2anc 583 . . . . . . 7 (∀𝑏(𝑏𝑦𝑏 ∈ Fin) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin))
7372a1i 11 . . . . . 6 (𝑦 ∈ Fin → (∀𝑏(𝑏𝑦𝑏 ∈ Fin) → ∀𝑏(𝑏 ⊆ (𝑦 ∪ {𝑧}) → 𝑏 ∈ Fin)))
749, 12, 15, 18, 22, 73findcard2 8909 . . . . 5 (𝐴 ∈ Fin → ∀𝑏(𝑏𝐴𝑏 ∈ Fin))
757419.21bi 2184 . . . 4 (𝐴 ∈ Fin → (𝑏𝐴𝑏 ∈ Fin))
766, 75vtoclg 3495 . . 3 (𝐵 ∈ V → (𝐴 ∈ Fin → (𝐵𝐴𝐵 ∈ Fin)))
7776impd 410 . 2 (𝐵 ∈ V → ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin))
782, 77mpcom 38 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  pwfilem  8922  fnfi  8925  f1domfi  8928  domfi  8935  ssfid  8971  infi  8972  finresfin  8974  diffi  8979  findcard3  8987  unfir  9012  fofinf1o  9024  cnvfiALT  9031  f1fi  9036  imafiALT  9042  mapfi  9045  ixpfi2  9047  mptfi  9048  cnvimamptfin  9050  suppssfifsupp  9073  snopfsupp  9081  fsuppres  9083  sniffsupp  9089  elfiun  9119  oemapvali  9372  ackbij2lem1  9906  ackbij1lem11  9917  fin23lem26  10012  fin23lem23  10013  fin23lem21  10026  fin11a  10070  isfin1-3  10073  axcclem  10144  ssnn0fi  13633  hashun3  14027  hashss  14052  hashssdif  14055  hashsslei  14069  hashreshashfun  14082  hashbclem  14092  hashf1lem2  14098  seqcoll2  14107  pr2pwpr  14121  fsumless  15436  cvgcmpce  15458  qshash  15467  incexclem  15476  incexc  15477  incexc2  15478  fprodmodd  15635  sumeven  16024  sumodd  16025  bitsfi  16072  bitsinv1  16077  bitsinvp1  16084  sadcaddlem  16092  sadadd2lem  16094  sadadd3  16096  sadaddlem  16101  sadasslem  16105  sadeq  16107  phicl2  16397  phibnd  16400  hashdvds  16404  phiprmpw  16405  phimullem  16408  eulerthlem2  16411  eulerth  16412  phisum  16419  sumhash  16525  prmreclem2  16546  prmreclem3  16547  prmreclem4  16548  prmreclem5  16549  1arith  16556  hashbccl  16632  prmgaplem3  16682  lagsubg  18733  symgfisg  18991  symggen2  18994  odcl2  19087  sylow1lem2  19119  sylow1lem3  19120  sylow1lem4  19121  sylow1lem5  19122  pgpssslw  19134  sylow2alem2  19138  sylow2a  19139  sylow2blem3  19142  sylow3lem3  19149  sylow3lem6  19152  gsumval3lem1  19421  gsumval3lem2  19422  gsumval3  19423  gsumpt  19478  ablfacrplem  19583  ablfacrp2  19585  ablfac1c  19589  ablfac1eulem  19590  ablfac1eu  19591  dsmmfi  20855  mplsubg  21118  mpllss  21119  psrbagsn  21181  psr1baslem  21266  submabas  21635  mdetdiaglem  21655  maducoeval2  21697  fctop  22062  restfpw  22238  fincmp  22452  cmpfi  22467  bwth  22469  finlocfin  22579  lfinpfin  22583  locfincmp  22585  1stckgenlem  22612  ptbasfi  22640  ptcnplem  22680  ptcmpfi  22872  cfinfil  22952  ufinffr  22988  fin1aufil  22991  tsmsres  23203  ovoliunlem1  24571  ovolicc2lem4  24589  ovolicc2lem5  24590  i1fima  24747  i1fd  24750  itg1cl  24754  itg1ge0  24755  i1f0  24756  i1f1  24759  i1fmul  24765  itg1addlem4  24768  itg1addlem4OLD  24769  itg1mulc  24774  itg10a  24780  itg1ge0a  24781  itg1climres  24784  plyexmo  25378  aannenlem2  25394  aalioulem2  25398  birthday  26009  wilthlem2  26123  ppifi  26160  prmdvdsfi  26161  ppiprm  26205  chtprm  26207  chtdif  26212  efchtdvds  26213  ppidif  26217  ppiltx  26231  mumul  26235  sqff1o  26236  musum  26245  ppiub  26257  vmasum  26269  logfac2  26270  dchrabs  26313  dchrptlem1  26317  dchrptlem2  26318  dchrpt  26320  lgsquadlem1  26433  lgsquadlem2  26434  lgsquadlem3  26435  chebbnd1lem1  26522  chtppilimlem1  26526  rpvmasum2  26565  dchrisum0re  26566  rplogsum  26580  dirith2  26581  cusgrfi  27728  hashwwlksnext  28180  relfi  30842  imafi2  30948  unifi3  30949  ffsrn  30966  xrge0tsmsd  31219  gsumle  31252  rmfsupp2  31394  hasheuni  31953  carsgclctunlem1  32184  sibfof  32207  sitgclg  32209  oddpwdc  32221  eulerpartlems  32227  eulerpartlemb  32235  eulerpartlemmf  32242  eulerpartlemgf  32246  eulerpartlemgs2  32247  coinfliplem  32345  coinflippv  32350  ballotlemfelz  32357  ballotlemfp1  32358  ballotlemfc0  32359  ballotlemfcc  32360  ballotlemiex  32368  ballotlemsup  32371  ballotlemfg  32392  ballotlemfrc  32393  ballotlemfrceq  32395  ballotth  32404  breprexpnat  32514  hgt750lemb  32536  hgt750leme  32538  fisshasheq  32973  deranglem  33028  subfacp1lem3  33044  subfacp1lem5  33046  subfacp1lem6  33047  erdszelem2  33054  erdszelem8  33060  erdsze2lem2  33066  snmlff  33191  mvrsfpw  33368  finminlem  34434  topdifinffinlem  35445  matunitlindflem1  35700  poimirlem9  35713  poimirlem26  35730  poimirlem27  35731  poimirlem28  35732  poimirlem30  35734  poimirlem32  35736  itg2addnclem2  35756  nnubfi  35835  nninfnub  35836  sstotbnd2  35859  cntotbnd  35881  sticksstones1  40030  rencldnfilem  40558  jm2.22  40733  jm2.23  40734  filnm  40831  pwssfi  42482  disjinfi  42620  fsumiunss  43006  fprodexp  43025  fprodabs2  43026  mccllem  43028  sumnnodd  43061  fprodcncf  43331  dvmptfprod  43376  dvnprodlem1  43377  dvnprodlem2  43378  fourierdlem25  43563  fourierdlem37  43575  fourierdlem51  43588  fourierdlem79  43616  fouriersw  43662  etransclem16  43681  etransclem24  43689  etransclem33  43698  etransclem44  43709  sge0resplit  43834  sge0iunmptlemfi  43841  sge0iunmptlemre  43843  carageniuncllem2  43950  hsphoidmvle2  44013  hsphoidmvle  44014  hoidmvlelem4  44026  hoidmvlelem5  44027  fmtnoinf  44876  perfectALTVlem2  45062  rmsuppfi  45597  mndpsuppfi  45599  scmsuppfi  45601  suppmptcfin  45603
  Copyright terms: Public domain W3C validator