| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivcncf | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvdivcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdivcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvdivcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
| dvdivcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
| dvdivcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
| Ref | Expression |
|---|---|
| dvdivcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvdivcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | dvdivcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
| 4 | dvdivcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
| 5 | cncff 24814 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
| 6 | fdm 6665 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 8 | dvdivcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
| 9 | cncff 24814 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
| 10 | fdm 6665 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
| 11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 12 | 1, 2, 3, 7, 11 | dvdivf 46044 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| 13 | ax-resscn 11070 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
| 14 | sseq1 3956 | . . . . . . . . 9 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 16 | eqimss 3989 | . . . . . . . 8 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
| 18 | elpri 4599 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
| 20 | pm3.44 961 | . . . . . . 7 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
| 21 | 17, 19, 20 | mpsyl 68 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | difssd 4086 | . . . . . . 7 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
| 23 | 3, 22 | fssd 6673 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| 24 | dvbsss 25831 | . . . . . . 7 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 25 | 7, 24 | eqsstrrdi 3976 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 26 | dvcn 25851 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
| 27 | 21, 23, 25, 11, 26 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
| 28 | 4, 27 | mulcncff 45992 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
| 29 | dvcn 25851 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
| 30 | 21, 2, 25, 7, 29 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
| 31 | 8, 30 | mulcncff 45992 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋–cn→ℂ)) |
| 32 | 28, 31 | subcncff 46002 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋–cn→ℂ)) |
| 33 | eldifi 4080 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
| 34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
| 35 | eldifi 4080 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
| 36 | 35 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
| 37 | 34, 36 | mulcld 11139 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
| 38 | eldifsni 4741 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
| 39 | 38 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
| 40 | eldifsni 4741 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
| 41 | 40 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
| 42 | 34, 36, 39, 41 | mulne0d 11776 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
| 43 | eldifsn 4737 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
| 44 | 37, 42, 43 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 46 | 1, 25 | ssexd 5264 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 47 | inidm 4176 | . . . . 5 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 48 | 45, 3, 3, 46, 46, 47 | off 7634 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0})) |
| 49 | 27, 27 | mulcncff 45992 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
| 50 | cncfcdm 24819 | . . . . 5 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) | |
| 51 | 22, 49, 50 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) |
| 52 | 48, 51 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
| 53 | 32, 52 | divcncff 46013 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
| 54 | 12, 53 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 {csn 4575 {cpr 4577 dom cdm 5619 ⟶wf 6482 (class class class)co 7352 ∘f cof 7614 ℂcc 11011 ℝcr 11012 0cc0 11013 · cmul 11018 − cmin 11351 / cdiv 11781 –cn→ccncf 24797 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-t1 23230 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: fourierdlem58 46286 fourierdlem59 46287 |
| Copyright terms: Public domain | W3C validator |