Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivcncf Structured version   Visualization version   GIF version

Theorem dvdivcncf 46049
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivcncf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivcncf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivcncf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivcncf.fdv (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
dvdivcncf.gdv (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
dvdivcncf (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))

Proof of Theorem dvdivcncf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdivcncf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivcncf.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvdivcncf.g . . 3 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
4 dvdivcncf.fdv . . . 4 (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
5 cncff 24814 . . . 4 ((𝑆 D 𝐹) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ)
6 fdm 6665 . . . 4 ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋)
74, 5, 63syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
8 dvdivcncf.gdv . . . 4 (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
9 cncff 24814 . . . 4 ((𝑆 D 𝐺) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ)
10 fdm 6665 . . . 4 ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋)
118, 9, 103syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
121, 2, 3, 7, 11dvdivf 46044 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
13 ax-resscn 11070 . . . . . . . . 9 ℝ ⊆ ℂ
14 sseq1 3956 . . . . . . . . 9 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
1513, 14mpbiri 258 . . . . . . . 8 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
16 eqimss 3989 . . . . . . . 8 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1715, 16pm3.2i 470 . . . . . . 7 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
18 elpri 4599 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
191, 18syl 17 . . . . . . 7 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
20 pm3.44 961 . . . . . . 7 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
2117, 19, 20mpsyl 68 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
22 difssd 4086 . . . . . . 7 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
233, 22fssd 6673 . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
24 dvbsss 25831 . . . . . . 7 dom (𝑆 D 𝐹) ⊆ 𝑆
257, 24eqsstrrdi 3976 . . . . . 6 (𝜑𝑋𝑆)
26 dvcn 25851 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋cn→ℂ))
2721, 23, 25, 11, 26syl31anc 1375 . . . . 5 (𝜑𝐺 ∈ (𝑋cn→ℂ))
284, 27mulcncff 45992 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋cn→ℂ))
29 dvcn 25851 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋cn→ℂ))
3021, 2, 25, 7, 29syl31anc 1375 . . . . 5 (𝜑𝐹 ∈ (𝑋cn→ℂ))
318, 30mulcncff 45992 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋cn→ℂ))
3228, 31subcncff 46002 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋cn→ℂ))
33 eldifi 4080 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
3433adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
35 eldifi 4080 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
3635adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
3734, 36mulcld 11139 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
38 eldifsni 4741 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
3938adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
40 eldifsni 4741 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
4140adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
4234, 36, 39, 41mulne0d 11776 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
43 eldifsn 4737 . . . . . . 7 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
4437, 42, 43sylanbrc 583 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
4544adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
461, 25ssexd 5264 . . . . 5 (𝜑𝑋 ∈ V)
47 inidm 4176 . . . . 5 (𝑋𝑋) = 𝑋
4845, 3, 3, 46, 46, 47off 7634 . . . 4 (𝜑 → (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0}))
4927, 27mulcncff 45992 . . . . 5 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→ℂ))
50 cncfcdm 24819 . . . . 5 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺f · 𝐺) ∈ (𝑋cn→ℂ)) → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5122, 49, 50syl2anc 584 . . . 4 (𝜑 → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5248, 51mpbird 257 . . 3 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})))
5332, 52divcncff 46013 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) ∈ (𝑋cn→ℂ))
5412, 53eqeltrd 2833 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  wss 3898  {csn 4575  {cpr 4577  dom cdm 5619  wf 6482  (class class class)co 7352  f cof 7614  cc 11011  cr 11012  0cc0 11013   · cmul 11018  cmin 11351   / cdiv 11781  cnccncf 24797   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-t1 23230  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  fourierdlem58  46286  fourierdlem59  46287
  Copyright terms: Public domain W3C validator