![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivcncf | Structured version Visualization version GIF version |
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvdivcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdivcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvdivcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
dvdivcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
dvdivcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
dvdivcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvdivcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvdivcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
4 | dvdivcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
5 | cncff 24734 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
6 | fdm 6716 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
8 | dvdivcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
9 | cncff 24734 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
10 | fdm 6716 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
12 | 1, 2, 3, 7, 11 | dvdivf 45089 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
13 | ax-resscn 11162 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
14 | sseq1 3999 | . . . . . . . . 9 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
15 | 13, 14 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
16 | eqimss 4032 | . . . . . . . 8 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
18 | elpri 4642 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
20 | pm3.44 956 | . . . . . . 7 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
21 | 17, 19, 20 | mpsyl 68 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
22 | difssd 4124 | . . . . . . 7 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
23 | 3, 22 | fssd 6725 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
24 | dvbsss 25752 | . . . . . . 7 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
25 | 7, 24 | eqsstrrdi 4029 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
26 | dvcn 25772 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
27 | 21, 23, 25, 11, 26 | syl31anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
28 | 4, 27 | mulcncff 45037 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
29 | dvcn 25772 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
30 | 21, 2, 25, 7, 29 | syl31anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
31 | 8, 30 | mulcncff 45037 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋–cn→ℂ)) |
32 | 28, 31 | subcncff 45047 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋–cn→ℂ)) |
33 | eldifi 4118 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
35 | eldifi 4118 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
36 | 35 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
37 | 34, 36 | mulcld 11230 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
38 | eldifsni 4785 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
39 | 38 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
40 | eldifsni 4785 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
41 | 40 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
42 | 34, 36, 39, 41 | mulne0d 11862 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
43 | eldifsn 4782 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
44 | 37, 42, 43 | sylanbrc 582 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
46 | 1, 25 | ssexd 5314 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
47 | inidm 4210 | . . . . 5 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
48 | 45, 3, 3, 46, 46, 47 | off 7681 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0})) |
49 | 27, 27 | mulcncff 45037 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
50 | cncfcdm 24739 | . . . . 5 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) | |
51 | 22, 49, 50 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) |
52 | 48, 51 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
53 | 32, 52 | divcncff 45058 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
54 | 12, 53 | eqeltrd 2825 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ∖ cdif 3937 ⊆ wss 3940 {csn 4620 {cpr 4622 dom cdm 5666 ⟶wf 6529 (class class class)co 7401 ∘f cof 7661 ℂcc 11103 ℝcr 11104 0cc0 11105 · cmul 11110 − cmin 11440 / cdiv 11867 –cn→ccncf 24717 D cdv 25713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-hom 17219 df-cco 17220 df-rest 17366 df-topn 17367 df-0g 17385 df-gsum 17386 df-topgen 17387 df-pt 17388 df-prds 17391 df-xrs 17446 df-qtop 17451 df-imas 17452 df-xps 17454 df-mre 17528 df-mrc 17529 df-acs 17531 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-mulg 18985 df-cntz 19222 df-cmn 19691 df-psmet 21219 df-xmet 21220 df-met 21221 df-bl 21222 df-mopn 21223 df-fbas 21224 df-fg 21225 df-cnfld 21228 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-lp 22961 df-perf 22962 df-cn 23052 df-cnp 23053 df-t1 23139 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cncf 24719 df-limc 25716 df-dv 25717 |
This theorem is referenced by: fourierdlem58 45331 fourierdlem59 45332 |
Copyright terms: Public domain | W3C validator |