Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivcncf | Structured version Visualization version GIF version |
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvdivcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvdivcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
dvdivcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
dvdivcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
dvdivcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
Ref | Expression |
---|---|
dvdivcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | dvdivcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
3 | dvdivcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
4 | dvdivcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
5 | cncff 23962 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
6 | fdm 6593 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
8 | dvdivcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
9 | cncff 23962 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
10 | fdm 6593 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
12 | 1, 2, 3, 7, 11 | dvdivf 43353 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
13 | ax-resscn 10859 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
14 | sseq1 3942 | . . . . . . . . 9 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
15 | 13, 14 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
16 | eqimss 3973 | . . . . . . . 8 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
18 | elpri 4580 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
20 | pm3.44 956 | . . . . . . 7 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
21 | 17, 19, 20 | mpsyl 68 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
22 | difssd 4063 | . . . . . . 7 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
23 | 3, 22 | fssd 6602 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
24 | dvbsss 24971 | . . . . . . 7 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
25 | 7, 24 | eqsstrrdi 3972 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
26 | dvcn 24990 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
27 | 21, 23, 25, 11, 26 | syl31anc 1371 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
28 | 4, 27 | mulcncff 43301 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
29 | dvcn 24990 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
30 | 21, 2, 25, 7, 29 | syl31anc 1371 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
31 | 8, 30 | mulcncff 43301 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋–cn→ℂ)) |
32 | 28, 31 | subcncff 43311 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋–cn→ℂ)) |
33 | eldifi 4057 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
35 | eldifi 4057 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
36 | 35 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
37 | 34, 36 | mulcld 10926 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
38 | eldifsni 4720 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
39 | 38 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
40 | eldifsni 4720 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
41 | 40 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
42 | 34, 36, 39, 41 | mulne0d 11557 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
43 | eldifsn 4717 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
44 | 37, 42, 43 | sylanbrc 582 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
46 | 1, 25 | ssexd 5243 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
47 | inidm 4149 | . . . . 5 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
48 | 45, 3, 3, 46, 46, 47 | off 7529 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0})) |
49 | 27, 27 | mulcncff 43301 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
50 | cncffvrn 23967 | . . . . 5 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) | |
51 | 22, 49, 50 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) |
52 | 48, 51 | mpbird 256 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
53 | 32, 52 | divcncff 43322 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
54 | 12, 53 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 dom cdm 5580 ⟶wf 6414 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 0cc0 10802 · cmul 10807 − cmin 11135 / cdiv 11562 –cn→ccncf 23945 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-t1 22373 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: fourierdlem58 43595 fourierdlem59 43596 |
Copyright terms: Public domain | W3C validator |