| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdivcncf | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvdivcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvdivcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvdivcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) |
| dvdivcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
| dvdivcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
| Ref | Expression |
|---|---|
| dvdivcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvdivcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | dvdivcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) | |
| 4 | dvdivcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
| 5 | cncff 24842 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
| 6 | fdm 6720 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 8 | dvdivcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
| 9 | cncff 24842 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
| 10 | fdm 6720 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
| 11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 12 | 1, 2, 3, 7, 11 | dvdivf 45918 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) |
| 13 | ax-resscn 11191 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
| 14 | sseq1 3989 | . . . . . . . . 9 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 16 | eqimss 4022 | . . . . . . . 8 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
| 18 | elpri 4630 | . . . . . . . 8 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 19 | 1, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
| 20 | pm3.44 961 | . . . . . . 7 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
| 21 | 17, 19, 20 | mpsyl 68 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | difssd 4117 | . . . . . . 7 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
| 23 | 3, 22 | fssd 6728 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| 24 | dvbsss 25860 | . . . . . . 7 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 25 | 7, 24 | eqsstrrdi 4009 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 26 | dvcn 25880 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
| 27 | 21, 23, 25, 11, 26 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
| 28 | 4, 27 | mulcncff 45866 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
| 29 | dvcn 25880 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
| 30 | 21, 2, 25, 7, 29 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
| 31 | 8, 30 | mulcncff 45866 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋–cn→ℂ)) |
| 32 | 28, 31 | subcncff 45876 | . . 3 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋–cn→ℂ)) |
| 33 | eldifi 4111 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
| 34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
| 35 | eldifi 4111 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
| 36 | 35 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
| 37 | 34, 36 | mulcld 11260 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
| 38 | eldifsni 4771 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
| 39 | 38 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
| 40 | eldifsni 4771 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
| 41 | 40 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
| 42 | 34, 36, 39, 41 | mulne0d 11894 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
| 43 | eldifsn 4767 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0)) | |
| 44 | 37, 42, 43 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 45 | 44 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 46 | 1, 25 | ssexd 5299 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 47 | inidm 4207 | . . . . 5 ⊢ (𝑋 ∩ 𝑋) = 𝑋 | |
| 48 | 45, 3, 3, 46, 46, 47 | off 7694 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0})) |
| 49 | 27, 27 | mulcncff 45866 | . . . . 5 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
| 50 | cncfcdm 24847 | . . . . 5 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) | |
| 51 | 22, 49, 50 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0})) ↔ (𝐺 ∘f · 𝐺):𝑋⟶(ℂ ∖ {0}))) |
| 52 | 48, 51 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝐺 ∘f · 𝐺) ∈ (𝑋–cn→(ℂ ∖ {0}))) |
| 53 | 32, 52 | divcncff 45887 | . 2 ⊢ (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
| 54 | 12, 53 | eqeltrd 2835 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 {cpr 4608 dom cdm 5659 ⟶wf 6532 (class class class)co 7410 ∘f cof 7674 ℂcc 11132 ℝcr 11133 0cc0 11134 · cmul 11139 − cmin 11471 / cdiv 11899 –cn→ccncf 24825 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-t1 23257 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: fourierdlem58 46160 fourierdlem59 46161 |
| Copyright terms: Public domain | W3C validator |