Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivcncf Structured version   Visualization version   GIF version

Theorem dvdivcncf 42205
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivcncf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivcncf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivcncf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivcncf.fdv (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
dvdivcncf.gdv (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
dvdivcncf (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))

Proof of Theorem dvdivcncf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdivcncf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivcncf.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvdivcncf.g . . 3 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
4 dvdivcncf.fdv . . . 4 (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
5 cncff 23495 . . . 4 ((𝑆 D 𝐹) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ)
6 fdm 6516 . . . 4 ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋)
74, 5, 63syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
8 dvdivcncf.gdv . . . 4 (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
9 cncff 23495 . . . 4 ((𝑆 D 𝐺) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ)
10 fdm 6516 . . . 4 ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋)
118, 9, 103syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
121, 2, 3, 7, 11dvdivf 42200 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
13 ax-resscn 10588 . . . . . . . . 9 ℝ ⊆ ℂ
14 sseq1 3991 . . . . . . . . 9 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
1513, 14mpbiri 260 . . . . . . . 8 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
16 eqimss 4022 . . . . . . . 8 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1715, 16pm3.2i 473 . . . . . . 7 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
18 elpri 4582 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
191, 18syl 17 . . . . . . 7 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
20 pm3.44 956 . . . . . . 7 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
2117, 19, 20mpsyl 68 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
22 difssd 4108 . . . . . . 7 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
233, 22fssd 6522 . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
24 dvbsss 24494 . . . . . . 7 dom (𝑆 D 𝐹) ⊆ 𝑆
257, 24eqsstrrdi 4021 . . . . . 6 (𝜑𝑋𝑆)
26 dvcn 24512 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋cn→ℂ))
2721, 23, 25, 11, 26syl31anc 1369 . . . . 5 (𝜑𝐺 ∈ (𝑋cn→ℂ))
284, 27mulcncff 42144 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋cn→ℂ))
29 dvcn 24512 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋cn→ℂ))
3021, 2, 25, 7, 29syl31anc 1369 . . . . 5 (𝜑𝐹 ∈ (𝑋cn→ℂ))
318, 30mulcncff 42144 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋cn→ℂ))
3228, 31subcncff 42156 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋cn→ℂ))
33 eldifi 4102 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
3433adantr 483 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
35 eldifi 4102 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
3635adantl 484 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
3734, 36mulcld 10655 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
38 eldifsni 4715 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
3938adantr 483 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
40 eldifsni 4715 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
4140adantl 484 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
4234, 36, 39, 41mulne0d 11286 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
43 eldifsn 4712 . . . . . . 7 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
4437, 42, 43sylanbrc 585 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
4544adantl 484 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
461, 25ssexd 5220 . . . . 5 (𝜑𝑋 ∈ V)
47 inidm 4194 . . . . 5 (𝑋𝑋) = 𝑋
4845, 3, 3, 46, 46, 47off 7418 . . . 4 (𝜑 → (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0}))
4927, 27mulcncff 42144 . . . . 5 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→ℂ))
50 cncffvrn 23500 . . . . 5 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺f · 𝐺) ∈ (𝑋cn→ℂ)) → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5122, 49, 50syl2anc 586 . . . 4 (𝜑 → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5248, 51mpbird 259 . . 3 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})))
5332, 52divcncff 42167 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) ∈ (𝑋cn→ℂ))
5412, 53eqeltrd 2913 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  wss 3935  {csn 4560  {cpr 4562  dom cdm 5549  wf 6345  (class class class)co 7150  f cof 7401  cc 10529  cr 10530  0cc0 10531   · cmul 10536  cmin 10864   / cdiv 11291  cnccncf 23478   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-t1 21916  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459
This theorem is referenced by:  fourierdlem58  42443  fourierdlem59  42444
  Copyright terms: Public domain W3C validator