Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdivcncf Structured version   Visualization version   GIF version

Theorem dvdivcncf 45094
Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvdivcncf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvdivcncf.f (𝜑𝐹:𝑋⟶ℂ)
dvdivcncf.g (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
dvdivcncf.fdv (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
dvdivcncf.gdv (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
dvdivcncf (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))

Proof of Theorem dvdivcncf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdivcncf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvdivcncf.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvdivcncf.g . . 3 (𝜑𝐺:𝑋⟶(ℂ ∖ {0}))
4 dvdivcncf.fdv . . . 4 (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
5 cncff 24734 . . . 4 ((𝑆 D 𝐹) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ)
6 fdm 6716 . . . 4 ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋)
74, 5, 63syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
8 dvdivcncf.gdv . . . 4 (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
9 cncff 24734 . . . 4 ((𝑆 D 𝐺) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ)
10 fdm 6716 . . . 4 ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋)
118, 9, 103syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
121, 2, 3, 7, 11dvdivf 45089 . 2 (𝜑 → (𝑆 D (𝐹f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)))
13 ax-resscn 11162 . . . . . . . . 9 ℝ ⊆ ℂ
14 sseq1 3999 . . . . . . . . 9 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
1513, 14mpbiri 258 . . . . . . . 8 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
16 eqimss 4032 . . . . . . . 8 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1715, 16pm3.2i 470 . . . . . . 7 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
18 elpri 4642 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
191, 18syl 17 . . . . . . 7 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
20 pm3.44 956 . . . . . . 7 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
2117, 19, 20mpsyl 68 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
22 difssd 4124 . . . . . . 7 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
233, 22fssd 6725 . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
24 dvbsss 25752 . . . . . . 7 dom (𝑆 D 𝐹) ⊆ 𝑆
257, 24eqsstrrdi 4029 . . . . . 6 (𝜑𝑋𝑆)
26 dvcn 25772 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋cn→ℂ))
2721, 23, 25, 11, 26syl31anc 1370 . . . . 5 (𝜑𝐺 ∈ (𝑋cn→ℂ))
284, 27mulcncff 45037 . . . 4 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋cn→ℂ))
29 dvcn 25772 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋cn→ℂ))
3021, 2, 25, 7, 29syl31anc 1370 . . . . 5 (𝜑𝐹 ∈ (𝑋cn→ℂ))
318, 30mulcncff 45037 . . . 4 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋cn→ℂ))
3228, 31subcncff 45047 . . 3 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋cn→ℂ))
33 eldifi 4118 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
3433adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
35 eldifi 4118 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
3635adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
3734, 36mulcld 11230 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
38 eldifsni 4785 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
3938adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
40 eldifsni 4785 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
4140adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
4234, 36, 39, 41mulne0d 11862 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
43 eldifsn 4782 . . . . . . 7 ((𝑥 · 𝑦) ∈ (ℂ ∖ {0}) ↔ ((𝑥 · 𝑦) ∈ ℂ ∧ (𝑥 · 𝑦) ≠ 0))
4437, 42, 43sylanbrc 582 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
4544adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
461, 25ssexd 5314 . . . . 5 (𝜑𝑋 ∈ V)
47 inidm 4210 . . . . 5 (𝑋𝑋) = 𝑋
4845, 3, 3, 46, 46, 47off 7681 . . . 4 (𝜑 → (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0}))
4927, 27mulcncff 45037 . . . . 5 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→ℂ))
50 cncfcdm 24739 . . . . 5 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝐺f · 𝐺) ∈ (𝑋cn→ℂ)) → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5122, 49, 50syl2anc 583 . . . 4 (𝜑 → ((𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})) ↔ (𝐺f · 𝐺):𝑋⟶(ℂ ∖ {0})))
5248, 51mpbird 257 . . 3 (𝜑 → (𝐺f · 𝐺) ∈ (𝑋cn→(ℂ ∖ {0})))
5332, 52divcncff 45058 . 2 (𝜑 → ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺f · 𝐺)) ∈ (𝑋cn→ℂ))
5412, 53eqeltrd 2825 1 (𝜑 → (𝑆 D (𝐹f / 𝐺)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  cdif 3937  wss 3940  {csn 4620  {cpr 4622  dom cdm 5666  wf 6529  (class class class)co 7401  f cof 7661  cc 11103  cr 11104  0cc0 11105   · cmul 11110  cmin 11440   / cdiv 11867  cnccncf 24717   D cdv 25713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-fbas 21224  df-fg 21225  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-ntr 22845  df-cls 22846  df-nei 22923  df-lp 22961  df-perf 22962  df-cn 23052  df-cnp 23053  df-t1 23139  df-haus 23140  df-tx 23387  df-hmeo 23580  df-fil 23671  df-fm 23763  df-flim 23764  df-flf 23765  df-xms 24147  df-ms 24148  df-tms 24149  df-cncf 24719  df-limc 25716  df-dv 25717
This theorem is referenced by:  fourierdlem58  45331  fourierdlem59  45332
  Copyright terms: Public domain W3C validator