Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptidg Structured version   Visualization version   GIF version

Theorem dvmptidg 40920
Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptidg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptidg.a (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
Assertion
Ref Expression
dvmptidg (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥

Proof of Theorem dvmptidg
StepHypRef Expression
1 dvmptidg.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ax-resscn 10316 . . . . . 6 ℝ ⊆ ℂ
3 sseq1 3851 . . . . . 6 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 250 . . . . 5 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
5 eqimss 3882 . . . . 5 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
64, 5pm3.2i 464 . . . 4 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
7 elpri 4421 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
81, 7syl 17 . . . 4 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
9 pm3.44 987 . . . 4 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
106, 8, 9mpsyl 68 . . 3 (𝜑𝑆 ⊆ ℂ)
1110sselda 3827 . 2 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
12 1red 10364 . 2 ((𝜑𝑥𝑆) → 1 ∈ ℝ)
131dvmptid 24126 . 2 (𝜑 → (𝑆 D (𝑥𝑆𝑥)) = (𝑥𝑆 ↦ 1))
14 eqid 2825 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1514cnfldtopon 22963 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1615a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
17 resttopon 21343 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
1816, 10, 17syl2anc 579 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
19 dvmptidg.a . . 3 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
20 toponss 21109 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴𝑆)
2118, 19, 20syl2anc 579 . 2 (𝜑𝐴𝑆)
22 eqid 2825 . 2 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
231, 11, 12, 13, 21, 22, 14, 19dvmptres 24132 1 (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 878   = wceq 1656  wcel 2164  wss 3798  {cpr 4401  cmpt 4954  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  1c1 10260  t crest 16441  TopOpenctopn 16442  fldccnfld 20113  TopOnctopon 21092   D cdv 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fi 8592  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-icc 12477  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-rest 16443  df-topn 16444  df-topgen 16464  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-cncf 23058  df-limc 24036  df-dv 24037
This theorem is referenced by:  dvxpaek  40944  fourierdlem28  41140  fourierdlem58  41169  fourierdlem59  41170
  Copyright terms: Public domain W3C validator