Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptidg Structured version   Visualization version   GIF version

Theorem dvmptidg 42559
Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmptidg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptidg.a (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
Assertion
Ref Expression
dvmptidg (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥

Proof of Theorem dvmptidg
StepHypRef Expression
1 dvmptidg.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
3 sseq1 3940 . . . . . 6 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 261 . . . . 5 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
5 eqimss 3971 . . . . 5 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
64, 5pm3.2i 474 . . . 4 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
7 elpri 4547 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
81, 7syl 17 . . . 4 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
9 pm3.44 957 . . . 4 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
106, 8, 9mpsyl 68 . . 3 (𝜑𝑆 ⊆ ℂ)
1110sselda 3915 . 2 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
12 1red 10631 . 2 ((𝜑𝑥𝑆) → 1 ∈ ℝ)
131dvmptid 24560 . 2 (𝜑 → (𝑆 D (𝑥𝑆𝑥)) = (𝑥𝑆 ↦ 1))
14 eqid 2798 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1514cnfldtopon 23388 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1615a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
17 resttopon 21766 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
1816, 10, 17syl2anc 587 . . 3 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
19 dvmptidg.a . . 3 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
20 toponss 21532 . . 3 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴𝑆)
2118, 19, 20syl2anc 587 . 2 (𝜑𝐴𝑆)
22 eqid 2798 . 2 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
231, 11, 12, 13, 21, 22, 14, 19dvmptres 24566 1 (𝜑 → (𝑆 D (𝑥𝐴𝑥)) = (𝑥𝐴 ↦ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wss 3881  {cpr 4527  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527  t crest 16686  TopOpenctopn 16687  fldccnfld 20091  TopOnctopon 21515   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvxpaek  42582  fourierdlem28  42777  fourierdlem58  42806  fourierdlem59  42807
  Copyright terms: Public domain W3C validator