![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvmptidg | Structured version Visualization version GIF version |
Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dvmptidg.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptidg.a | ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
Ref | Expression |
---|---|
dvmptidg | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝑥)) = (𝑥 ∈ 𝐴 ↦ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptidg.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | ax-resscn 10316 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 3851 | . . . . . 6 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 250 | . . . . 5 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 3882 | . . . . 5 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | pm3.2i 464 | . . . 4 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
7 | elpri 4421 | . . . . 5 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
9 | pm3.44 987 | . . . 4 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
10 | 6, 8, 9 | mpsyl 68 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
11 | 10 | sselda 3827 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℂ) |
12 | 1red 10364 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 1 ∈ ℝ) | |
13 | 1 | dvmptid 24126 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
14 | eqid 2825 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
15 | 14 | cnfldtopon 22963 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
17 | resttopon 21343 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
18 | 16, 10, 17 | syl2anc 579 | . . 3 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
19 | dvmptidg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
20 | toponss 21109 | . . 3 ⊢ ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ 𝐴 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → 𝐴 ⊆ 𝑆) | |
21 | 18, 19, 20 | syl2anc 579 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
22 | eqid 2825 | . 2 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
23 | 1, 11, 12, 13, 21, 22, 14, 19 | dvmptres 24132 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝐴 ↦ 𝑥)) = (𝑥 ∈ 𝐴 ↦ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 {cpr 4401 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ℝcr 10258 1c1 10260 ↾t crest 16441 TopOpenctopn 16442 ℂfldccnfld 20113 TopOnctopon 21092 D cdv 24033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-icc 12477 df-fz 12627 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-mulr 16326 df-starv 16327 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-topn 16444 df-topgen 16464 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-fbas 20110 df-fg 20111 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cld 21201 df-ntr 21202 df-cls 21203 df-nei 21280 df-lp 21318 df-perf 21319 df-cn 21409 df-cnp 21410 df-haus 21497 df-fil 22027 df-fm 22119 df-flim 22120 df-flf 22121 df-xms 22502 df-ms 22503 df-cncf 23058 df-limc 24036 df-dv 24037 |
This theorem is referenced by: dvxpaek 40944 fourierdlem28 41140 fourierdlem58 41169 fourierdlem59 41170 |
Copyright terms: Public domain | W3C validator |