| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvmulcncf | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dvmulcncf.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmulcncf.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| dvmulcncf.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
| dvmulcncf.fdv | ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) |
| dvmulcncf.gdv | ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) |
| Ref | Expression |
|---|---|
| dvmulcncf | ⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmulcncf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvmulcncf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 3 | dvmulcncf.g | . . 3 ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | |
| 4 | dvmulcncf.fdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) | |
| 5 | cncff 24837 | . . . 4 ⊢ ((𝑆 D 𝐹) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ) | |
| 6 | fdm 6715 | . . . 4 ⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 8 | dvmulcncf.gdv | . . . 4 ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) | |
| 9 | cncff 24837 | . . . 4 ⊢ ((𝑆 D 𝐺) ∈ (𝑋–cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ) | |
| 10 | fdm 6715 | . . . 4 ⊢ ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋) | |
| 11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) |
| 12 | 1, 2, 3, 7, 11 | dvmulf 25898 | . 2 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹))) |
| 13 | ax-resscn 11186 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 14 | sseq1 3984 | . . . . . . . 8 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 15 | 13, 14 | mpbiri 258 | . . . . . . 7 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 16 | eqimss 4017 | . . . . . . 7 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 17 | 15, 16 | pm3.2i 470 | . . . . . 6 ⊢ ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) |
| 18 | elpri 4625 | . . . . . . 7 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 19 | 1, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ)) |
| 20 | pm3.44 961 | . . . . . 6 ⊢ (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)) | |
| 21 | 17, 19, 20 | mpsyl 68 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 22 | dvbsss 25855 | . . . . . 6 ⊢ dom (𝑆 D 𝐹) ⊆ 𝑆 | |
| 23 | 7, 22 | eqsstrrdi 4004 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 24 | dvcn 25875 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋–cn→ℂ)) | |
| 25 | 21, 3, 23, 11, 24 | syl31anc 1375 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
| 26 | 4, 25 | mulcncff 45899 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) |
| 27 | dvcn 25875 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋–cn→ℂ)) | |
| 28 | 21, 2, 23, 7, 27 | syl31anc 1375 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) |
| 29 | 8, 28 | mulcncff 45899 | . . 3 ⊢ (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋–cn→ℂ)) |
| 30 | 26, 29 | addcncff 45913 | . 2 ⊢ (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋–cn→ℂ)) |
| 31 | 12, 30 | eqeltrd 2834 | 1 ⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {cpr 4603 dom cdm 5654 ⟶wf 6527 (class class class)co 7405 ∘f cof 7669 ℂcc 11127 ℝcr 11128 + caddc 11132 · cmul 11134 –cn→ccncf 24820 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: fourierdlem72 46207 |
| Copyright terms: Public domain | W3C validator |