Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmulcncf Structured version   Visualization version   GIF version

Theorem dvmulcncf 44414
Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvmulcncf.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmulcncf.f (𝜑𝐹:𝑋⟶ℂ)
dvmulcncf.g (𝜑𝐺:𝑋⟶ℂ)
dvmulcncf.fdv (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
dvmulcncf.gdv (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
Assertion
Ref Expression
dvmulcncf (𝜑 → (𝑆 D (𝐹f · 𝐺)) ∈ (𝑋cn→ℂ))

Proof of Theorem dvmulcncf
StepHypRef Expression
1 dvmulcncf.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvmulcncf.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
3 dvmulcncf.g . . 3 (𝜑𝐺:𝑋⟶ℂ)
4 dvmulcncf.fdv . . . 4 (𝜑 → (𝑆 D 𝐹) ∈ (𝑋cn→ℂ))
5 cncff 24338 . . . 4 ((𝑆 D 𝐹) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐹):𝑋⟶ℂ)
6 fdm 6713 . . . 4 ((𝑆 D 𝐹):𝑋⟶ℂ → dom (𝑆 D 𝐹) = 𝑋)
74, 5, 63syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
8 dvmulcncf.gdv . . . 4 (𝜑 → (𝑆 D 𝐺) ∈ (𝑋cn→ℂ))
9 cncff 24338 . . . 4 ((𝑆 D 𝐺) ∈ (𝑋cn→ℂ) → (𝑆 D 𝐺):𝑋⟶ℂ)
10 fdm 6713 . . . 4 ((𝑆 D 𝐺):𝑋⟶ℂ → dom (𝑆 D 𝐺) = 𝑋)
118, 9, 103syl 18 . . 3 (𝜑 → dom (𝑆 D 𝐺) = 𝑋)
121, 2, 3, 7, 11dvmulf 25389 . 2 (𝜑 → (𝑆 D (𝐹f · 𝐺)) = (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)))
13 ax-resscn 11149 . . . . . . . 8 ℝ ⊆ ℂ
14 sseq1 4003 . . . . . . . 8 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
1513, 14mpbiri 257 . . . . . . 7 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
16 eqimss 4036 . . . . . . 7 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
1715, 16pm3.2i 471 . . . . . 6 ((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ))
18 elpri 4644 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
191, 18syl 17 . . . . . 6 (𝜑 → (𝑆 = ℝ ∨ 𝑆 = ℂ))
20 pm3.44 958 . . . . . 6 (((𝑆 = ℝ → 𝑆 ⊆ ℂ) ∧ (𝑆 = ℂ → 𝑆 ⊆ ℂ)) → ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ))
2117, 19, 20mpsyl 68 . . . . 5 (𝜑𝑆 ⊆ ℂ)
22 dvbsss 25348 . . . . . 6 dom (𝑆 D 𝐹) ⊆ 𝑆
237, 22eqsstrrdi 4033 . . . . 5 (𝜑𝑋𝑆)
24 dvcn 25367 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐺:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐺) = 𝑋) → 𝐺 ∈ (𝑋cn→ℂ))
2521, 3, 23, 11, 24syl31anc 1373 . . . 4 (𝜑𝐺 ∈ (𝑋cn→ℂ))
264, 25mulcncff 44359 . . 3 (𝜑 → ((𝑆 D 𝐹) ∘f · 𝐺) ∈ (𝑋cn→ℂ))
27 dvcn 25367 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ ∧ 𝑋𝑆) ∧ dom (𝑆 D 𝐹) = 𝑋) → 𝐹 ∈ (𝑋cn→ℂ))
2821, 2, 23, 7, 27syl31anc 1373 . . . 4 (𝜑𝐹 ∈ (𝑋cn→ℂ))
298, 28mulcncff 44359 . . 3 (𝜑 → ((𝑆 D 𝐺) ∘f · 𝐹) ∈ (𝑋cn→ℂ))
3026, 29addcncff 44373 . 2 (𝜑 → (((𝑆 D 𝐹) ∘f · 𝐺) ∘f + ((𝑆 D 𝐺) ∘f · 𝐹)) ∈ (𝑋cn→ℂ))
3112, 30eqeltrd 2832 1 (𝜑 → (𝑆 D (𝐹f · 𝐺)) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wss 3944  {cpr 4624  dom cdm 5669  wf 6528  (class class class)co 7393  f cof 7651  cc 11090  cr 11091   + caddc 11095   · cmul 11097  cnccncf 24321   D cdv 25309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-icc 13313  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-haus 22748  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-limc 25312  df-dv 25313
This theorem is referenced by:  fourierdlem72  44667
  Copyright terms: Public domain W3C validator