MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcnp Structured version   Visualization version   GIF version

Theorem lmcnp 22739
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcnp.4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
Assertion
Ref Expression
lmcnp (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmcnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.4 . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 eqid 2732 . . . . . . 7 𝐽 = 𝐽
3 eqid 2732 . . . . . . 7 𝐾 = 𝐾
42, 3cnpf 22682 . . . . . 6 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐺: 𝐽 𝐾)
51, 4syl 17 . . . . 5 (𝜑𝐺: 𝐽 𝐾)
6 lmcnp.3 . . . . . . . . 9 (𝜑𝐹(⇝𝑡𝐽)𝑃)
7 cnptop1 22677 . . . . . . . . . . . 12 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
81, 7syl 17 . . . . . . . . . . 11 (𝜑𝐽 ∈ Top)
9 toptopon2 22351 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 217 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
11 nnuz 12849 . . . . . . . . . 10 ℕ = (ℤ‘1)
12 1zzd 12577 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
1310, 11, 12lmbr2 22694 . . . . . . . . 9 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))))
146, 13mpbid 231 . . . . . . . 8 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣))))
1514simp1d 1142 . . . . . . 7 (𝜑𝐹 ∈ ( 𝐽pm ℂ))
168uniexd 7716 . . . . . . . 8 (𝜑 𝐽 ∈ V)
17 cnex 11175 . . . . . . . 8 ℂ ∈ V
18 elpm2g 8823 . . . . . . . 8 (( 𝐽 ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
1916, 17, 18sylancl 586 . . . . . . 7 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2015, 19mpbid 231 . . . . . 6 (𝜑 → (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ))
2120simpld 495 . . . . 5 (𝜑𝐹:dom 𝐹 𝐽)
22 fco 6729 . . . . 5 ((𝐺: 𝐽 𝐾𝐹:dom 𝐹 𝐽) → (𝐺𝐹):dom 𝐹 𝐾)
235, 21, 22syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):dom 𝐹 𝐾)
2423ffdmd 6736 . . 3 (𝜑 → (𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾)
2523fdmd 6716 . . . 4 (𝜑 → dom (𝐺𝐹) = dom 𝐹)
2620simprd 496 . . . 4 (𝜑 → dom 𝐹 ⊆ ℂ)
2725, 26eqsstrd 4017 . . 3 (𝜑 → dom (𝐺𝐹) ⊆ ℂ)
28 cnptop2 22678 . . . . . 6 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
291, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
3029uniexd 7716 . . . 4 (𝜑 𝐾 ∈ V)
31 elpm2g 8823 . . . 4 (( 𝐾 ∈ V ∧ ℂ ∈ V) → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3230, 17, 31sylancl 586 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3324, 27, 32mpbir2and 711 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝐾pm ℂ))
3414simp2d 1143 . . 3 (𝜑𝑃 𝐽)
355, 34ffvelcdmd 7073 . 2 (𝜑 → (𝐺𝑃) ∈ 𝐾)
3614simp3d 1144 . . . . . 6 (𝜑 → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
3736adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
38 cnpimaex 22691 . . . . . . 7 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
39383expb 1120 . . . . . 6 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
401, 39sylan 580 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
41 r19.29 3114 . . . . . . 7 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
42 pm3.45 622 . . . . . . . . 9 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) → ((𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢)))
4342imp 407 . . . . . . . 8 (((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
4443reximi 3084 . . . . . . 7 (∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
4541, 44syl 17 . . . . . 6 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
465ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺: 𝐽 𝐾)
4746ffnd 6706 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn 𝐽)
48 simplrl 775 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣𝐽)
49 elssuni 4935 . . . . . . . . . . . . . . . . 17 (𝑣𝐽𝑣 𝐽)
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 𝐽)
51 fnfvima 7220 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐽𝑣 𝐽 ∧ (𝐹𝑘) ∈ 𝑣) → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣))
52513expia 1121 . . . . . . . . . . . . . . . 16 ((𝐺 Fn 𝐽𝑣 𝐽) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5347, 50, 52syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5421ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹 𝐽)
55 fvco3 6977 . . . . . . . . . . . . . . . . 17 ((𝐹:dom 𝐹 𝐽𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
5654, 55sylan 580 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
5756eleq1d 2818 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) ↔ (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5853, 57sylibrd 258 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣)))
59 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑣) ⊆ 𝑢)
6059sseld 3978 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
6158, 60syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
62 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹)
6325ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺𝐹) = dom 𝐹)
6462, 63eleqtrrd 2836 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺𝐹))
6561, 64jctild 526 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6665expimpd 454 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6766ralimdv 3169 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6867reximdv 3170 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6968expr 457 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐺𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7069impcomd 412 . . . . . . 7 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7170rexlimdva 3155 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7245, 71syl5 34 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7337, 40, 72mp2and 697 . . . 4 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))
7473expr 457 . . 3 ((𝜑𝑢𝐾) → ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7574ralrimiva 3146 . 2 (𝜑 → ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
76 toptopon2 22351 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7729, 76sylib 217 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
7877, 11, 12lmbr2 22694 . 2 (𝜑 → ((𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃) ↔ ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ∧ (𝐺𝑃) ∈ 𝐾 ∧ ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))))
7933, 35, 75, 78mpbir3and 1342 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  wss 3945   cuni 4902   class class class wbr 5142  dom cdm 5670  cima 5673  ccom 5674   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7394  pm cpm 8806  cc 11092  1c1 11095  cn 12196  cuz 12806  Topctop 22326  TopOnctopon 22343   CnP ccnp 22660  𝑡clm 22661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-z 12543  df-uz 12807  df-top 22327  df-topon 22344  df-cnp 22663  df-lm 22664
This theorem is referenced by:  lmcn  22740  1stccnp  22897
  Copyright terms: Public domain W3C validator