Step | Hyp | Ref
| Expression |
1 | | lmcnp.4 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
2 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
4 | 2, 3 | cnpf 22306 |
. . . . . 6
⊢ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺:∪ 𝐽⟶∪ 𝐾) |
6 | | lmcnp.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
7 | | cnptop1 22301 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
8 | 1, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ Top) |
9 | | toptopon2 21975 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | 8, 9 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | | nnuz 12550 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
12 | | 1zzd 12281 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
13 | 10, 11, 12 | lmbr2 22318 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ)
∧ 𝑃 ∈ ∪ 𝐽
∧ ∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))))) |
14 | 6, 13 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ)
∧ 𝑃 ∈ ∪ 𝐽
∧ ∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)))) |
15 | 14 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (∪ 𝐽 ↑pm
ℂ)) |
16 | 8 | uniexd 7573 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐽
∈ V) |
17 | | cnex 10883 |
. . . . . . . 8
⊢ ℂ
∈ V |
18 | | elpm2g 8590 |
. . . . . . . 8
⊢ ((∪ 𝐽
∈ V ∧ ℂ ∈ V) → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ)
↔ (𝐹:dom 𝐹⟶∪ 𝐽
∧ dom 𝐹 ⊆
ℂ))) |
19 | 16, 17, 18 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ)
↔ (𝐹:dom 𝐹⟶∪ 𝐽
∧ dom 𝐹 ⊆
ℂ))) |
20 | 15, 19 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝐹:dom 𝐹⟶∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ)) |
21 | 20 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶∪ 𝐽) |
22 | | fco 6608 |
. . . . 5
⊢ ((𝐺:∪
𝐽⟶∪ 𝐾
∧ 𝐹:dom 𝐹⟶∪ 𝐽)
→ (𝐺 ∘ 𝐹):dom 𝐹⟶∪ 𝐾) |
23 | 5, 21, 22 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ 𝐹):dom 𝐹⟶∪ 𝐾) |
24 | 23 | ffdmd 6615 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾) |
25 | 23 | fdmd 6595 |
. . . 4
⊢ (𝜑 → dom (𝐺 ∘ 𝐹) = dom 𝐹) |
26 | 20 | simprd 495 |
. . . 4
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
27 | 25, 26 | eqsstrd 3955 |
. . 3
⊢ (𝜑 → dom (𝐺 ∘ 𝐹) ⊆ ℂ) |
28 | | cnptop2 22302 |
. . . . . 6
⊢ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) |
29 | 1, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Top) |
30 | 29 | uniexd 7573 |
. . . 4
⊢ (𝜑 → ∪ 𝐾
∈ V) |
31 | | elpm2g 8590 |
. . . 4
⊢ ((∪ 𝐾
∈ V ∧ ℂ ∈ V) → ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm ℂ)
↔ ((𝐺 ∘ 𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾 ∧ dom (𝐺 ∘ 𝐹) ⊆ ℂ))) |
32 | 30, 17, 31 | sylancl 585 |
. . 3
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm ℂ)
↔ ((𝐺 ∘ 𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾 ∧ dom (𝐺 ∘ 𝐹) ⊆ ℂ))) |
33 | 24, 27, 32 | mpbir2and 709 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm
ℂ)) |
34 | 14 | simp2d 1141 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
35 | 5, 34 | ffvelrnd 6944 |
. 2
⊢ (𝜑 → (𝐺‘𝑃) ∈ ∪ 𝐾) |
36 | 14 | simp3d 1142 |
. . . . . 6
⊢ (𝜑 → ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))) |
37 | 36 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))) |
38 | | cnpimaex 22315 |
. . . . . . 7
⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
39 | 38 | 3expb 1118 |
. . . . . 6
⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
40 | 1, 39 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
41 | | r19.29 3183 |
. . . . . . 7
⊢
((∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢))) |
42 | | pm3.45 621 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) → ((𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢))) |
43 | 42 | imp 406 |
. . . . . . . 8
⊢ (((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
44 | 43 | reximi 3174 |
. . . . . . 7
⊢
(∃𝑣 ∈
𝐽 ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
45 | 41, 44 | syl 17 |
. . . . . 6
⊢
((∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
46 | 5 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
47 | 46 | ffnd 6585 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn ∪ 𝐽) |
48 | | simplrl 773 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 ∈ 𝐽) |
49 | | elssuni 4868 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ 𝐽 → 𝑣 ⊆ ∪ 𝐽) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 ⊆ ∪ 𝐽) |
51 | | fnfvima 7091 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 Fn ∪
𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ∧ (𝐹‘𝑘) ∈ 𝑣) → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣)) |
52 | 51 | 3expia 1119 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 Fn ∪
𝐽 ∧ 𝑣 ⊆ ∪ 𝐽) → ((𝐹‘𝑘) ∈ 𝑣 → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
53 | 47, 50, 52 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
54 | 21 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹⟶∪ 𝐽) |
55 | | fvco3 6849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:dom 𝐹⟶∪ 𝐽 ∧ 𝑘 ∈ dom 𝐹) → ((𝐺 ∘ 𝐹)‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
56 | 54, 55 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺 ∘ 𝐹)‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣) ↔ (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
58 | 53, 57 | sylibrd 258 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → ((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣))) |
59 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺 “ 𝑣) ⊆ 𝑢) |
60 | 59 | sseld 3916 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣) → ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
61 | 58, 60 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
62 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹) |
63 | 25 | ad3antrrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺 ∘ 𝐹) = dom 𝐹) |
64 | 62, 63 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺 ∘ 𝐹)) |
65 | 61, 64 | jctild 525 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
66 | 65 | expimpd 453 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
67 | 66 | ralimdv 3103 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
68 | 67 | reximdv 3201 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
69 | 68 | expr 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ 𝑣 ∈ 𝐽) → ((𝐺 “ 𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)))) |
70 | 69 | impcomd 411 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ 𝑣 ∈ 𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
71 | 70 | rexlimdva 3212 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → (∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
72 | 45, 71 | syl5 34 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ((∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
73 | 37, 40, 72 | mp2and 695 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
74 | 73 | expr 456 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
75 | 74 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐾 ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
76 | | toptopon2 21975 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
77 | 29, 76 | sylib 217 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
78 | 77, 11, 12 | lmbr2 22318 |
. 2
⊢ (𝜑 → ((𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm ℂ)
∧ (𝐺‘𝑃) ∈ ∪ 𝐾
∧ ∀𝑢 ∈
𝐾 ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))))) |
79 | 33, 35, 75, 78 | mpbir3and 1340 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |