MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrmof Structured version   Visualization version   GIF version

Theorem ssrmof 4047
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrmof (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5 𝑥𝐴
2 ssrexf.2 . . . . 5 𝑥𝐵
31, 2dfssf 3970 . . . 4 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
43biimpi 215 . . 3 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
5 pm3.45 620 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
65alimi 1806 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
7 moim 2533 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)) → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
84, 6, 73syl 18 . 2 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
9 df-rmo 3364 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
10 df-rmo 3364 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
118, 9, 103imtr4g 295 1 (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1532  wcel 2099  ∃*wmo 2527  wnfc 2876  ∃*wrmo 3363  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-nf 1779  df-mo 2529  df-clel 2803  df-nfc 2878  df-rmo 3364  df-ss 3964
This theorem is referenced by:  2sqreunnlem1  27478  2sqreunnlem2  27484  disjss1f  32492
  Copyright terms: Public domain W3C validator