![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrmof | Structured version Visualization version GIF version |
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ssrexf.1 | ⊢ Ⅎ𝑥𝐴 |
ssrexf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
ssrmof | ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | ssrexf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfssf 3999 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | biimpi 216 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
5 | pm3.45 621 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 5 | alimi 1809 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | moim 2547 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
8 | 4, 6, 7 | 3syl 18 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
9 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
10 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
11 | 8, 9, 10 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∃*wmo 2541 Ⅎwnfc 2893 ∃*wrmo 3387 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-mo 2543 df-clel 2819 df-nfc 2895 df-rmo 3388 df-ss 3993 |
This theorem is referenced by: 2sqreunnlem1 27511 2sqreunnlem2 27517 disjss1f 32594 |
Copyright terms: Public domain | W3C validator |