![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrmof | Structured version Visualization version GIF version |
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ssrexf.1 | ⊢ Ⅎ𝑥𝐴 |
ssrexf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
ssrmof | ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | ssrexf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss2f 3965 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | biimpi 215 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
5 | pm3.45 621 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 5 | alimi 1805 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | moim 2530 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
8 | 4, 6, 7 | 3syl 18 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
9 | df-rmo 3368 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
10 | df-rmo 3368 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
11 | 8, 9, 10 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 ∃*wmo 2524 Ⅎwnfc 2875 ∃*wrmo 3367 ⊆ wss 3941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-rmo 3368 df-v 3468 df-in 3948 df-ss 3958 |
This theorem is referenced by: 2sqreunnlem1 27323 2sqreunnlem2 27329 disjss1f 32298 |
Copyright terms: Public domain | W3C validator |