MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrmof Structured version   Visualization version   GIF version

Theorem ssrmof 3986
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrmof (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5 𝑥𝐴
2 ssrexf.2 . . . . 5 𝑥𝐵
31, 2dfss2f 3911 . . . 4 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
43biimpi 215 . . 3 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
5 pm3.45 622 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
65alimi 1814 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
7 moim 2544 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)) → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
84, 6, 73syl 18 . 2 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
9 df-rmo 3071 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
10 df-rmo 3071 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
118, 9, 103imtr4g 296 1 (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  ∃*wmo 2538  wnfc 2887  ∃*wrmo 3067  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rmo 3071  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  2sqreunnlem1  26597  2sqreunnlem2  26603  disjss1f  30911
  Copyright terms: Public domain W3C validator