MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss2 Structured version   Visualization version   GIF version

Theorem rabss2 4037
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 622 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
21alimi 1811 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
3 df-ss 3928 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 ss2ab 4022 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
52, 3, 43imtr4i 292 . 2 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)})
6 df-rab 3403 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 3403 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
85, 6, 73sstr4g 3997 1 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  {cab 2707  {crab 3402  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-ss 3928
This theorem is referenced by:  rabssrabd  4042  sess2  5597  hashbcss  16951  dprdss  19945  minveclem4  25365  prmdvdsfi  27050  mumul  27124  sqff1o  27125  rpvmasumlem  27431  disjxwwlkn  29893  clwwlknfi  30024  shatomistici  32340  rabfodom  32484  xpinpreima2  33890  ballotth  34522  bj-unrab  36907  icorempo  37332  lssats  38998  lpssat  38999  lssatle  39001  lssat  39002  atlatmstc  39305  dochspss  41365  unitscyglem4  42179  rmxyelqirrOLD  42892  idomodle  43173  sssmf  46729
  Copyright terms: Public domain W3C validator