| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabss2 | Structured version Visualization version GIF version | ||
| Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabss2 | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 2 | 1 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | df-ss 3928 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | ss2ab 4022 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 6 | df-rab 3403 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 7 | df-rab 3403 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 8 | 5, 6, 7 | 3sstr4g 3997 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 {crab 3402 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-ss 3928 |
| This theorem is referenced by: rabssrabd 4042 sess2 5597 hashbcss 16951 dprdss 19937 minveclem4 25308 prmdvdsfi 26993 mumul 27067 sqff1o 27068 rpvmasumlem 27374 disjxwwlkn 29816 clwwlknfi 29947 shatomistici 32263 rabfodom 32407 xpinpreima2 33870 ballotth 34502 bj-unrab 36887 icorempo 37312 lssats 38978 lpssat 38979 lssatle 38981 lssat 38982 atlatmstc 39285 dochspss 41345 unitscyglem4 42159 rmxyelqirrOLD 42872 idomodle 43153 sssmf 46709 |
| Copyright terms: Public domain | W3C validator |