| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabss2 | Structured version Visualization version GIF version | ||
| Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid axioms. (Revised by TM, 1-Feb-2026.) |
| Ref | Expression |
|---|---|
| rabss2 | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anim1d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | ss2abdv 4012 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 4 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 6 | 3, 4, 5 | 3sstr4g 3983 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {cab 2709 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: rabssrabd 4030 sess2 5580 hashbcss 16916 dprdss 19943 minveclem4 25359 prmdvdsfi 27044 mumul 27118 sqff1o 27119 rpvmasumlem 27425 disjxwwlkn 29891 clwwlknfi 30025 shatomistici 32341 rabfodom 32485 xpinpreima2 33920 ballotth 34551 bj-unrab 36968 icorempo 37393 lssats 39059 lpssat 39060 lssatle 39062 lssat 39063 atlatmstc 39366 dochspss 41425 unitscyglem4 42239 idomodle 43232 sssmf 46784 |
| Copyright terms: Public domain | W3C validator |