MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss2 Structured version   Visualization version   GIF version

Theorem rabss2 4078
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 622 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
21alimi 1811 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
3 df-ss 3968 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 ss2ab 4062 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
52, 3, 43imtr4i 292 . 2 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)})
6 df-rab 3437 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 3437 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
85, 6, 73sstr4g 4037 1 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2108  {cab 2714  {crab 3436  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-ss 3968
This theorem is referenced by:  rabssrabd  4083  sess2  5651  hashbcss  17042  dprdss  20049  minveclem4  25466  prmdvdsfi  27150  mumul  27224  sqff1o  27225  rpvmasumlem  27531  disjxwwlkn  29933  clwwlknfi  30064  shatomistici  32380  rabfodom  32524  xpinpreima2  33906  ballotth  34540  bj-unrab  36927  icorempo  37352  lssats  39013  lpssat  39014  lssatle  39016  lssat  39017  atlatmstc  39320  dochspss  41380  unitscyglem4  42199  rmxyelqirrOLD  42922  idomodle  43203  sssmf  46753
  Copyright terms: Public domain W3C validator