MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss2 Structured version   Visualization version   GIF version

Theorem rabss2 3975
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 621 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
21alimi 1793 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
3 dfss2 3877 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 ss2ab 3960 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
52, 3, 43imtr4i 293 . 2 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)})
6 df-rab 3114 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 3114 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
85, 6, 73sstr4g 3933 1 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1520  wcel 2081  {cab 2775  {crab 3109  wss 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-in 3866  df-ss 3874
This theorem is referenced by:  rabssrabd  3979  sess2  5412  hashbcss  16169  dprdss  18868  minveclem4  23718  prmdvdsfi  25366  mumul  25440  sqff1o  25441  rpvmasumlem  25745  disjxwwlkn  27379  clwwlknfi  27510  clwwlknfiOLD  27511  shatomistici  29829  rabfodom  29958  xpinpreima2  30767  ballotth  31412  bj-unrab  33819  icorempo  34182  lssats  35698  lpssat  35699  lssatle  35701  lssat  35702  atlatmstc  36005  dochspss  38064  rmxyelqirr  39011  idomodle  39300  sssmf  42577
  Copyright terms: Public domain W3C validator