MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss2 Structured version   Visualization version   GIF version

Theorem rabss2 4024
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid axioms. (Revised by TM, 1-Feb-2026.)
Assertion
Ref Expression
rabss2 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabss2
StepHypRef Expression
1 ssel 3923 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 611 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32ss2abdv 4012 . 2 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)})
4 df-rab 3396 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
5 df-rab 3396 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
63, 4, 53sstr4g 3983 1 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  {cab 2709  {crab 3395  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914
This theorem is referenced by:  rabssrabd  4030  sess2  5580  hashbcss  16916  dprdss  19943  minveclem4  25359  prmdvdsfi  27044  mumul  27118  sqff1o  27119  rpvmasumlem  27425  disjxwwlkn  29891  clwwlknfi  30025  shatomistici  32341  rabfodom  32485  xpinpreima2  33920  ballotth  34551  bj-unrab  36968  icorempo  37393  lssats  39059  lpssat  39060  lssatle  39062  lssat  39063  atlatmstc  39366  dochspss  41425  unitscyglem4  42239  idomodle  43232  sssmf  46784
  Copyright terms: Public domain W3C validator