MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim2 Structured version   Visualization version   GIF version

Theorem fbflim2 22582
Description: A condition for a filter base 𝐵 to converge to a point 𝐴. Use neighborhoods instead of open neighborhoods. Compare fbflim 22581. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛,𝑥   𝑛,𝐽,𝑥   𝑛,𝑋,𝑥   𝑥,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem fbflim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fbflim.3 . . 3 𝐹 = (𝑋filGen𝐵)
21fbflim 22581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦))))
3 topontop 21518 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 simpr 488 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴𝑋)
6 toponuni 21519 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76ad2antrr 725 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
85, 7eleqtrd 2892 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴 𝐽)
9 eqid 2798 . . . . . . . . 9 𝐽 = 𝐽
109isneip 21710 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
114, 8, 10syl2anc 587 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
12 simpr 488 . . . . . . 7 ((𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))
1311, 12syl6bi 256 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)))
14 r19.29 3216 . . . . . . . 8 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)))
15 pm3.45 624 . . . . . . . . . . 11 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ((𝐴𝑦𝑦𝑛) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛)))
1615imp 410 . . . . . . . . . 10 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛))
17 sstr2 3922 . . . . . . . . . . . . 13 (𝑥𝑦 → (𝑦𝑛𝑥𝑛))
1817com12 32 . . . . . . . . . . . 12 (𝑦𝑛 → (𝑥𝑦𝑥𝑛))
1918reximdv 3232 . . . . . . . . . . 11 (𝑦𝑛 → (∃𝑥𝐵 𝑥𝑦 → ∃𝑥𝐵 𝑥𝑛))
2019impcom 411 . . . . . . . . . 10 ((∃𝑥𝐵 𝑥𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛)
2116, 20syl 17 . . . . . . . . 9 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2221rexlimivw 3241 . . . . . . . 8 (∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2314, 22syl 17 . . . . . . 7 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2423ex 416 . . . . . 6 (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (∃𝑦𝐽 (𝐴𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛))
2513, 24syl9 77 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑥𝐵 𝑥𝑛)))
2625ralrimdv 3153 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
274adantr 484 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐽 ∈ Top)
28 simprl 770 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦𝐽)
29 simprr 772 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐴𝑦)
30 opnneip 21724 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
3127, 28, 29, 30syl3anc 1368 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
32 sseq2 3941 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑥𝑛𝑥𝑦))
3332rexbidv 3256 . . . . . . . . 9 (𝑛 = 𝑦 → (∃𝑥𝐵 𝑥𝑛 ↔ ∃𝑥𝐵 𝑥𝑦))
3433rspcv 3566 . . . . . . . 8 (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3531, 34syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3635expr 460 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (𝐴𝑦 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦)))
3736com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3837ralrimdva 3154 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3926, 38impbid 215 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
4039pm5.32da 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
412, 40bitrd 282 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881  {csn 4525   cuni 4800  cfv 6324  (class class class)co 7135  fBascfbas 20079  filGencfg 20080  Topctop 21498  TopOnctopon 21515  neicnei 21702   fLim cflim 22539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-ntr 21625  df-nei 21703  df-fil 22451  df-flim 22544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator