MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim2 Structured version   Visualization version   GIF version

Theorem fbflim2 23036
Description: A condition for a filter base 𝐵 to converge to a point 𝐴. Use neighborhoods instead of open neighborhoods. Compare fbflim 23035. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛,𝑥   𝑛,𝐽,𝑥   𝑛,𝑋,𝑥   𝑥,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem fbflim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fbflim.3 . . 3 𝐹 = (𝑋filGen𝐵)
21fbflim 23035 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦))))
3 topontop 21970 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 722 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 simpr 484 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴𝑋)
6 toponuni 21971 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76ad2antrr 722 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
85, 7eleqtrd 2841 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴 𝐽)
9 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
109isneip 22164 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
114, 8, 10syl2anc 583 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
12 simpr 484 . . . . . . 7 ((𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))
1311, 12syl6bi 252 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)))
14 r19.29 3183 . . . . . . . 8 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)))
15 pm3.45 621 . . . . . . . . . . 11 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ((𝐴𝑦𝑦𝑛) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛)))
1615imp 406 . . . . . . . . . 10 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛))
17 sstr2 3924 . . . . . . . . . . . . 13 (𝑥𝑦 → (𝑦𝑛𝑥𝑛))
1817com12 32 . . . . . . . . . . . 12 (𝑦𝑛 → (𝑥𝑦𝑥𝑛))
1918reximdv 3201 . . . . . . . . . . 11 (𝑦𝑛 → (∃𝑥𝐵 𝑥𝑦 → ∃𝑥𝐵 𝑥𝑛))
2019impcom 407 . . . . . . . . . 10 ((∃𝑥𝐵 𝑥𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛)
2116, 20syl 17 . . . . . . . . 9 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2221rexlimivw 3210 . . . . . . . 8 (∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2314, 22syl 17 . . . . . . 7 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2423ex 412 . . . . . 6 (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (∃𝑦𝐽 (𝐴𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛))
2513, 24syl9 77 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑥𝐵 𝑥𝑛)))
2625ralrimdv 3111 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
274adantr 480 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐽 ∈ Top)
28 simprl 767 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦𝐽)
29 simprr 769 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐴𝑦)
30 opnneip 22178 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
3127, 28, 29, 30syl3anc 1369 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
32 sseq2 3943 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑥𝑛𝑥𝑦))
3332rexbidv 3225 . . . . . . . . 9 (𝑛 = 𝑦 → (∃𝑥𝐵 𝑥𝑛 ↔ ∃𝑥𝐵 𝑥𝑦))
3433rspcv 3547 . . . . . . . 8 (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3531, 34syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3635expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (𝐴𝑦 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦)))
3736com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3837ralrimdva 3112 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3926, 38impbid 211 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
4039pm5.32da 578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
412, 40bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  {csn 4558   cuni 4836  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499  Topctop 21950  TopOnctopon 21967  neicnei 22156   fLim cflim 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-ntr 22079  df-nei 22157  df-fil 22905  df-flim 22998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator