MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim2 Structured version   Visualization version   GIF version

Theorem fbflim2 22579
Description: A condition for a filter base 𝐵 to converge to a point 𝐴. Use neighborhoods instead of open neighborhoods. Compare fbflim 22578. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fbflim2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐵,𝑛,𝑥   𝑛,𝐽,𝑥   𝑛,𝑋,𝑥   𝑥,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem fbflim2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fbflim.3 . . 3 𝐹 = (𝑋filGen𝐵)
21fbflim 22578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦))))
3 topontop 21515 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 724 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 simpr 487 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴𝑋)
6 toponuni 21516 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76ad2antrr 724 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
85, 7eleqtrd 2915 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → 𝐴 𝐽)
9 eqid 2821 . . . . . . . . 9 𝐽 = 𝐽
109isneip 21707 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
114, 8, 10syl2anc 586 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))))
12 simpr 487 . . . . . . 7 ((𝑛 𝐽 ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛))
1311, 12syl6bi 255 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)))
14 r19.29 3254 . . . . . . . 8 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)))
15 pm3.45 623 . . . . . . . . . . 11 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ((𝐴𝑦𝑦𝑛) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛)))
1615imp 409 . . . . . . . . . 10 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → (∃𝑥𝐵 𝑥𝑦𝑦𝑛))
17 sstr2 3973 . . . . . . . . . . . . 13 (𝑥𝑦 → (𝑦𝑛𝑥𝑛))
1817com12 32 . . . . . . . . . . . 12 (𝑦𝑛 → (𝑥𝑦𝑥𝑛))
1918reximdv 3273 . . . . . . . . . . 11 (𝑦𝑛 → (∃𝑥𝐵 𝑥𝑦 → ∃𝑥𝐵 𝑥𝑛))
2019impcom 410 . . . . . . . . . 10 ((∃𝑥𝐵 𝑥𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛)
2116, 20syl 17 . . . . . . . . 9 (((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2221rexlimivw 3282 . . . . . . . 8 (∃𝑦𝐽 ((𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2314, 22syl 17 . . . . . . 7 ((∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ∧ ∃𝑦𝐽 (𝐴𝑦𝑦𝑛)) → ∃𝑥𝐵 𝑥𝑛)
2423ex 415 . . . . . 6 (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (∃𝑦𝐽 (𝐴𝑦𝑦𝑛) → ∃𝑥𝐵 𝑥𝑛))
2513, 24syl9 77 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑥𝐵 𝑥𝑛)))
2625ralrimdv 3188 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
274adantr 483 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐽 ∈ Top)
28 simprl 769 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦𝐽)
29 simprr 771 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝐴𝑦)
30 opnneip 21721 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
3127, 28, 29, 30syl3anc 1367 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
32 sseq2 3992 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝑥𝑛𝑥𝑦))
3332rexbidv 3297 . . . . . . . . 9 (𝑛 = 𝑦 → (∃𝑥𝐵 𝑥𝑛 ↔ ∃𝑥𝐵 𝑥𝑦))
3433rspcv 3617 . . . . . . . 8 (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3531, 34syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑦𝐽𝐴𝑦)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦))
3635expr 459 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (𝐴𝑦 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∃𝑥𝐵 𝑥𝑦)))
3736com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3837ralrimdva 3189 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛 → ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)))
3926, 38impbid 214 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛))
4039pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑥𝐵 𝑥𝑦)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
412, 40bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥𝐵 𝑥𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935  {csn 4560   cuni 4831  cfv 6349  (class class class)co 7150  fBascfbas 20527  filGencfg 20528  Topctop 21495  TopOnctopon 21512  neicnei 21699   fLim cflim 22536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-fg 20537  df-top 21496  df-topon 21513  df-ntr 21622  df-nei 21700  df-fil 22448  df-flim 22541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator