Step | Hyp | Ref
| Expression |
1 | | fbflim.3 |
. . 3
⊢ 𝐹 = (𝑋filGen𝐵) |
2 | 1 | fbflim 23035 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦)))) |
3 | | topontop 21970 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
4 | 3 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
5 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
6 | | toponuni 21971 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
7 | 6 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
8 | 5, 7 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ 𝐽) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
10 | 9 | isneip 22164 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑛 ∈
((nei‘𝐽)‘{𝐴}) ↔ (𝑛 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)))) |
11 | 4, 8, 10 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑛 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)))) |
12 | | simpr 484 |
. . . . . . 7
⊢ ((𝑛 ⊆ ∪ 𝐽
∧ ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) |
13 | 11, 12 | syl6bi 252 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛))) |
14 | | r19.29 3183 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → ∃𝑦 ∈ 𝐽 ((𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛))) |
15 | | pm3.45 621 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) → ((𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛) → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛))) |
16 | 15 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛)) |
17 | | sstr2 3924 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ 𝑦 → (𝑦 ⊆ 𝑛 → 𝑥 ⊆ 𝑛)) |
18 | 17 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ 𝑛 → (𝑥 ⊆ 𝑦 → 𝑥 ⊆ 𝑛)) |
19 | 18 | reximdv 3201 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ 𝑛 → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛)) |
20 | 19 | impcom 407 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐵 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑛) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛) |
21 | 16, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛) |
22 | 21 | rexlimivw 3210 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐽 ((𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛) |
23 | 14, 22 | syl 17 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ∧ ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛)) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛) |
24 | 23 | ex 412 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) → (∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑛) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛)) |
25 | 13, 24 | syl9 77 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛))) |
26 | 25 | ralrimdv 3111 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛)) |
27 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦)) → 𝐽 ∈ Top) |
28 | | simprl 767 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦)) → 𝑦 ∈ 𝐽) |
29 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦)) → 𝐴 ∈ 𝑦) |
30 | | opnneip 22178 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
31 | 27, 28, 29, 30 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
32 | | sseq2 3943 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑦 → (𝑥 ⊆ 𝑛 ↔ 𝑥 ⊆ 𝑦)) |
33 | 32 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑛 = 𝑦 → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 ↔ ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
34 | 33 | rspcv 3547 |
. . . . . . . 8
⊢ (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
35 | 31, 34 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
36 | 35 | expr 456 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝐽) → (𝐴 ∈ 𝑦 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
37 | 36 | com23 86 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
38 | 37 | ralrimdva 3112 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛 → ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
39 | 26, 38 | impbid 211 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛)) |
40 | 39 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑦)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛))) |
41 | 2, 40 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛))) |