MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem2 Structured version   Visualization version   GIF version

Theorem ivthlem2 24625
Description: Lemma for ivth 24627. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
ivth.11 𝐶 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
ivthlem2 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝑆   𝑥,𝑈

Proof of Theorem ivthlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . . . 5 (𝜑𝐹 ∈ (𝐷cn→ℂ))
21adantr 481 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐹 ∈ (𝐷cn→ℂ))
3 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
4 ivth.11 . . . . . . . 8 𝐶 = sup(𝑆, ℝ, < )
5 ivth.10 . . . . . . . . . . 11 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
65ssrab3 4016 . . . . . . . . . 10 𝑆 ⊆ (𝐴[,]𝐵)
7 ivth.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
8 ivth.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
9 iccssre 13170 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
107, 8, 9syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
116, 10sstrid 3933 . . . . . . . . 9 (𝜑𝑆 ⊆ ℝ)
12 ivth.3 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ)
13 ivth.4 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
14 ivth.8 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
15 ivth.9 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
167, 8, 12, 13, 3, 1, 14, 15, 5ivthlem1 24624 . . . . . . . . . . 11 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
1716simpld 495 . . . . . . . . . 10 (𝜑𝐴𝑆)
1817ne0d 4270 . . . . . . . . 9 (𝜑𝑆 ≠ ∅)
1916simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
20 brralrspcev 5135 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ ∀𝑧𝑆 𝑧𝐵) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
218, 19, 20syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
2211, 18, 21suprcld 11947 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
234, 22eqeltrid 2844 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2411, 18, 21, 17suprubd 11946 . . . . . . . 8 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
2524, 4breqtrrdi 5117 . . . . . . 7 (𝜑𝐴𝐶)
2611, 18, 213jca 1127 . . . . . . . . . 10 (𝜑 → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
27 suprleub 11950 . . . . . . . . . 10 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
2826, 8, 27syl2anc 584 . . . . . . . . 9 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
2919, 28mpbird 256 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
304, 29eqbrtrid 5110 . . . . . . 7 (𝜑𝐶𝐵)
31 elicc2 13153 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
327, 8, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
3323, 25, 30, 32mpbir3and 1341 . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
343, 33sseldd 3923 . . . . 5 (𝜑𝐶𝐷)
3534adantr 481 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐶𝐷)
36 fveq2 6783 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
3736eleq1d 2824 . . . . . . 7 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐶) ∈ ℝ))
3814ralrimiva 3104 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3937, 38, 33rspcdva 3563 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℝ)
40 difrp 12777 . . . . . 6 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4139, 12, 40syl2anc 584 . . . . 5 (𝜑 → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4241biimpa 477 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝑈 − (𝐹𝐶)) ∈ ℝ+)
43 cncfi 24066 . . . 4 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝐶𝐷 ∧ (𝑈 − (𝐹𝐶)) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
442, 35, 42, 43syl3anc 1370 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
45 ssralv 3988 . . . . . . 7 ((𝐴[,]𝐵) ⊆ 𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
463, 45syl 17 . . . . . 6 (𝜑 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
4746ad2antrr 723 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
488ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐵 ∈ ℝ)
4923ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ∈ ℝ)
50 rphalfcl 12766 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
5150adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ+)
5251rpred 12781 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ)
5349, 52readdcld 11013 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) ∈ ℝ)
5448, 53ifcld 4506 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ)
557ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ∈ ℝ)
5625ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴𝐶)
5715simprd 496 . . . . . . . . . . . . . . 15 (𝜑𝑈 < (𝐹𝐵))
58 fveq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
5958eleq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
607rexrd 11034 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
618rexrd 11034 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
627, 8, 13ltled 11132 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
63 ubicc2 13206 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6460, 61, 62, 63syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6559, 38, 64rspcdva 3563 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝐵) ∈ ℝ)
66 lttr 11060 . . . . . . . . . . . . . . . 16 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
6739, 12, 65, 66syl3anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
6857, 67mpan2d 691 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < 𝑈 → (𝐹𝐶) < (𝐹𝐵)))
6968imp 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝐹𝐶) < (𝐹𝐵))
7069adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐹𝐶) < (𝐹𝐵))
7139ltnrd 11118 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝐶) < (𝐹𝐶))
72 fveq2 6783 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐶 → (𝐹𝐵) = (𝐹𝐶))
7372breq2d 5087 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐶 → ((𝐹𝐶) < (𝐹𝐵) ↔ (𝐹𝐶) < (𝐹𝐶)))
7473notbid 318 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (¬ (𝐹𝐶) < (𝐹𝐵) ↔ ¬ (𝐹𝐶) < (𝐹𝐶)))
7571, 74syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 = 𝐶 → ¬ (𝐹𝐶) < (𝐹𝐵)))
7675necon2ad 2959 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐵𝐶))
7776, 30jctild 526 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → (𝐶𝐵𝐵𝐶)))
7823, 8ltlend 11129 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐵 ↔ (𝐶𝐵𝐵𝐶)))
7977, 78sylibrd 258 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8079ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8170, 80mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < 𝐵)
8249, 51ltaddrpd 12814 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < (𝐶 + (𝑧 / 2)))
83 breq2 5079 . . . . . . . . . . . 12 (𝐵 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝐵𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
84 breq2 5079 . . . . . . . . . . . 12 ((𝐶 + (𝑧 / 2)) = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < (𝐶 + (𝑧 / 2)) ↔ 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
8583, 84ifboth 4499 . . . . . . . . . . 11 ((𝐶 < 𝐵𝐶 < (𝐶 + (𝑧 / 2))) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8681, 82, 85syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8749, 54, 86ltled 11132 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8855, 49, 54, 56, 87letrd 11141 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
89 min1 12932 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
9048, 53, 89syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
91 elicc2 13153 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
927, 8, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9392ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9454, 88, 90, 93mpbir3and 1341 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵))
9549, 54, 87abssubge0d 15152 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) = (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶))
96 rpre 12747 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
9796adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
9849, 97readdcld 11013 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + 𝑧) ∈ ℝ)
99 min2 12933 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
10048, 53, 99syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
101 rphalflt 12768 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
102101adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) < 𝑧)
10352, 97, 49, 102ltadd2dd 11143 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) < (𝐶 + 𝑧))
10454, 53, 98, 100, 103lelttrd 11142 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧))
10554, 49, 97ltsubadd2d 11582 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧 ↔ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧)))
106104, 105mpbird 256 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧)
10795, 106eqbrtrd 5097 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧)
108 fvoveq1 7307 . . . . . . . . . 10 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (abs‘(𝑦𝐶)) = (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)))
109108breq1d 5085 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → ((abs‘(𝑦𝐶)) < 𝑧 ↔ (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧))
110 breq2 5079 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝑦𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
111109, 110anbi12d 631 . . . . . . . 8 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) ↔ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))))
112111rspcev 3562 . . . . . . 7 ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ∧ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
11394, 107, 86, 112syl12anc 834 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
114 r19.29 3185 . . . . . . 7 ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)))
115 pm3.45 622 . . . . . . . . . 10 (((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦)))
116115imp 407 . . . . . . . . 9 ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦))
117 simprr 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 < 𝑦)
118 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
119118eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
120 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝜑)
121120, 38syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
122 simprl 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
123119, 121, 122rspcdva 3563 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
124120, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℝ)
125120, 12syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℝ)
126125, 124resubcld 11412 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑈 − (𝐹𝐶)) ∈ ℝ)
127123, 124, 126absdifltd 15154 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ↔ (((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))))))
128 ltle 11072 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
129123, 125, 128syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
130124recnd 11012 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℂ)
131125recnd 11012 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℂ)
132130, 131pncan3d 11344 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) = 𝑈)
133132breq2d 5087 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) ↔ (𝐹𝑦) < 𝑈))
134118breq1d 5085 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝑦) ≤ 𝑈))
135134, 5elrab2 3628 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑆 ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ≤ 𝑈))
136135baib 536 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴[,]𝐵) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
137136ad2antrl 725 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
138129, 133, 1373imtr4d 294 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → 𝑦𝑆))
139 suprub 11945 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦 ≤ sup(𝑆, ℝ, < ))
140139, 4breqtrrdi 5117 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦𝐶)
141140ex 413 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → (𝑦𝑆𝑦𝐶))
142120, 26, 1413syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆𝑦𝐶))
143120, 10syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐴[,]𝐵) ⊆ ℝ)
144143, 122sseldd 3923 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ ℝ)
145120, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 ∈ ℝ)
146144, 145lenltd 11130 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝐶 ↔ ¬ 𝐶 < 𝑦))
147142, 146sylibd 238 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 → ¬ 𝐶 < 𝑦))
148138, 147syld 47 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → ¬ 𝐶 < 𝑦))
149148adantld 491 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶)))) → ¬ 𝐶 < 𝑦))
150127, 149sylbid 239 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ 𝐶 < 𝑦))
151117, 150mt2d 136 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ¬ (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))
152151pm2.21d 121 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈))
153152expr 457 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐶 < 𝑦 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈)))
154153impcomd 412 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦) → ¬ (𝐹𝐶) < 𝑈))
155116, 154syl5 34 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
156155rexlimdva 3214 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
157114, 156syl5 34 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
158113, 157mpan2d 691 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
15947, 158syld 47 . . . 4 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
160159rexlimdva 3214 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
16144, 160mpd 15 . 2 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ¬ (𝐹𝐶) < 𝑈)
162161pm2.01da 796 1 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  wss 3888  c0 4257  ifcif 4460   class class class wbr 5075  cfv 6437  (class class class)co 7284  supcsup 9208  cc 10878  cr 10879   + caddc 10883  *cxr 11017   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  2c2 12037  +crp 12739  [,]cicc 13091  abscabs 14954  cnccncf 24048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-icc 13095  df-seq 13731  df-exp 13792  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-cncf 24050
This theorem is referenced by:  ivthlem3  24626
  Copyright terms: Public domain W3C validator