MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem2 Structured version   Visualization version   GIF version

Theorem ivthlem2 23513
Description: Lemma for ivth 23515. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
ivth.11 𝐶 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
ivthlem2 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝑆   𝑥,𝑈

Proof of Theorem ivthlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . . . 5 (𝜑𝐹 ∈ (𝐷cn→ℂ))
21adantr 472 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐹 ∈ (𝐷cn→ℂ))
3 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
4 ivth.11 . . . . . . . 8 𝐶 = sup(𝑆, ℝ, < )
5 ivth.10 . . . . . . . . . . . 12 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
6 ssrab2 3849 . . . . . . . . . . . 12 {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈} ⊆ (𝐴[,]𝐵)
75, 6eqsstri 3797 . . . . . . . . . . 11 𝑆 ⊆ (𝐴[,]𝐵)
8 ivth.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
9 ivth.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
10 iccssre 12460 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
118, 9, 10syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
127, 11syl5ss 3774 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℝ)
13 ivth.3 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
14 ivth.4 . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
15 ivth.8 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
178, 9, 13, 14, 3, 1, 15, 16, 5ivthlem1 23512 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
1817simpld 488 . . . . . . . . . . 11 (𝜑𝐴𝑆)
1918ne0d 4088 . . . . . . . . . 10 (𝜑𝑆 ≠ ∅)
2017simprd 489 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
21 brralrspcev 4871 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ∀𝑧𝑆 𝑧𝐵) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
229, 20, 21syl2anc 579 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
2312, 19, 223jca 1158 . . . . . . . . 9 (𝜑 → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
24 suprcl 11239 . . . . . . . . 9 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → sup(𝑆, ℝ, < ) ∈ ℝ)
2523, 24syl 17 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
264, 25syl5eqel 2848 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
27 suprub 11240 . . . . . . . . 9 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
2823, 18, 27syl2anc 579 . . . . . . . 8 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
2928, 4syl6breqr 4853 . . . . . . 7 (𝜑𝐴𝐶)
30 suprleub 11245 . . . . . . . . . 10 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3123, 9, 30syl2anc 579 . . . . . . . . 9 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3220, 31mpbird 248 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
334, 32syl5eqbr 4846 . . . . . . 7 (𝜑𝐶𝐵)
34 elicc2 12443 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
358, 9, 34syl2anc 579 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
3626, 29, 33, 35mpbir3and 1442 . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
373, 36sseldd 3764 . . . . 5 (𝜑𝐶𝐷)
3837adantr 472 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐶𝐷)
39 fveq2 6377 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4039eleq1d 2829 . . . . . . 7 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐶) ∈ ℝ))
4115ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
4240, 41, 36rspcdva 3468 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℝ)
43 difrp 12069 . . . . . 6 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4442, 13, 43syl2anc 579 . . . . 5 (𝜑 → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4544biimpa 468 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝑈 − (𝐹𝐶)) ∈ ℝ+)
46 cncfi 22979 . . . 4 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝐶𝐷 ∧ (𝑈 − (𝐹𝐶)) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
472, 38, 45, 46syl3anc 1490 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
48 ssralv 3828 . . . . . . 7 ((𝐴[,]𝐵) ⊆ 𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
493, 48syl 17 . . . . . 6 (𝜑 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
5049ad2antrr 717 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
519ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐵 ∈ ℝ)
5226ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ∈ ℝ)
53 rphalfcl 12059 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
5453adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ+)
5554rpred 12073 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ)
5652, 55readdcld 10325 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) ∈ ℝ)
5751, 56ifcld 4290 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ)
588ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ∈ ℝ)
5929ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴𝐶)
6016simprd 489 . . . . . . . . . . . . . . 15 (𝜑𝑈 < (𝐹𝐵))
61 fveq2 6377 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
6261eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
638rexrd 10345 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
649rexrd 10345 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
658, 9, 14ltled 10441 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
66 ubicc2 12496 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6763, 64, 65, 66syl3anc 1490 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6862, 41, 67rspcdva 3468 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝐵) ∈ ℝ)
69 lttr 10370 . . . . . . . . . . . . . . . 16 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
7042, 13, 68, 69syl3anc 1490 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
7160, 70mpan2d 685 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < 𝑈 → (𝐹𝐶) < (𝐹𝐵)))
7271imp 395 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝐹𝐶) < (𝐹𝐵))
7372adantr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐹𝐶) < (𝐹𝐵))
7442ltnrd 10427 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝐶) < (𝐹𝐶))
75 fveq2 6377 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐶 → (𝐹𝐵) = (𝐹𝐶))
7675breq2d 4823 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐶 → ((𝐹𝐶) < (𝐹𝐵) ↔ (𝐹𝐶) < (𝐹𝐶)))
7776notbid 309 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (¬ (𝐹𝐶) < (𝐹𝐵) ↔ ¬ (𝐹𝐶) < (𝐹𝐶)))
7874, 77syl5ibrcom 238 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 = 𝐶 → ¬ (𝐹𝐶) < (𝐹𝐵)))
7978necon2ad 2952 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐵𝐶))
8079, 33jctild 521 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → (𝐶𝐵𝐵𝐶)))
8126, 9ltlend 10438 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐵 ↔ (𝐶𝐵𝐵𝐶)))
8280, 81sylibrd 250 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8382ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8473, 83mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < 𝐵)
8552, 54ltaddrpd 12106 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < (𝐶 + (𝑧 / 2)))
86 breq2 4815 . . . . . . . . . . . 12 (𝐵 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝐵𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
87 breq2 4815 . . . . . . . . . . . 12 ((𝐶 + (𝑧 / 2)) = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < (𝐶 + (𝑧 / 2)) ↔ 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
8886, 87ifboth 4283 . . . . . . . . . . 11 ((𝐶 < 𝐵𝐶 < (𝐶 + (𝑧 / 2))) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8984, 85, 88syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
9052, 57, 89ltled 10441 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
9158, 52, 57, 59, 90letrd 10450 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
92 min1 12225 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
9351, 56, 92syl2anc 579 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
94 elicc2 12443 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
958, 9, 94syl2anc 579 . . . . . . . . 9 (𝜑 → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9695ad2antrr 717 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9757, 91, 93, 96mpbir3and 1442 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵))
9852, 57, 90abssubge0d 14458 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) = (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶))
99 rpre 12039 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
10099adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
10152, 100readdcld 10325 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + 𝑧) ∈ ℝ)
102 min2 12226 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
10351, 56, 102syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
104 rphalflt 12061 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
105104adantl 473 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) < 𝑧)
10655, 100, 52, 105ltadd2dd 10452 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) < (𝐶 + 𝑧))
10757, 56, 101, 103, 106lelttrd 10451 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧))
10857, 52, 100ltsubadd2d 10881 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧 ↔ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧)))
109107, 108mpbird 248 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧)
11098, 109eqbrtrd 4833 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧)
111 fvoveq1 6867 . . . . . . . . . 10 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (abs‘(𝑦𝐶)) = (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)))
112111breq1d 4821 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → ((abs‘(𝑦𝐶)) < 𝑧 ↔ (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧))
113 breq2 4815 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝑦𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
114112, 113anbi12d 624 . . . . . . . 8 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) ↔ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))))
115114rspcev 3462 . . . . . . 7 ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ∧ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
11697, 110, 89, 115syl12anc 865 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
117 r19.29 3219 . . . . . . 7 ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)))
118 pm3.45 615 . . . . . . . . . 10 (((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦)))
119118imp 395 . . . . . . . . 9 ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦))
120 simprr 789 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 < 𝑦)
121 fveq2 6377 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
122121eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
123 simplll 791 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝜑)
124123, 41syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
125 simprl 787 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
126122, 124, 125rspcdva 3468 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
127123, 42syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℝ)
128123, 13syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℝ)
129128, 127resubcld 10714 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑈 − (𝐹𝐶)) ∈ ℝ)
130126, 127, 129absdifltd 14460 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ↔ (((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))))))
131 ltle 10382 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑦) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
132126, 128, 131syl2anc 579 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
133127recnd 10324 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℂ)
134128recnd 10324 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℂ)
135133, 134pncan3d 10651 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) = 𝑈)
136135breq2d 4823 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) ↔ (𝐹𝑦) < 𝑈))
137121breq1d 4821 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝑦) ≤ 𝑈))
138137, 5elrab2 3525 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ≤ 𝑈))
139138baib 531 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴[,]𝐵) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
140139ad2antrl 719 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
141132, 136, 1403imtr4d 285 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → 𝑦𝑆))
142 suprub 11240 . . . . . . . . . . . . . . . . . . . . 21 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦 ≤ sup(𝑆, ℝ, < ))
143142, 4syl6breqr 4853 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦𝐶)
144143ex 401 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → (𝑦𝑆𝑦𝐶))
145123, 23, 1443syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆𝑦𝐶))
146123, 11syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐴[,]𝐵) ⊆ ℝ)
147146, 125sseldd 3764 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ ℝ)
148123, 26syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 ∈ ℝ)
149147, 148lenltd 10439 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝐶 ↔ ¬ 𝐶 < 𝑦))
150145, 149sylibd 230 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 → ¬ 𝐶 < 𝑦))
151141, 150syld 47 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → ¬ 𝐶 < 𝑦))
152151adantld 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶)))) → ¬ 𝐶 < 𝑦))
153130, 152sylbid 231 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ 𝐶 < 𝑦))
154120, 153mt2d 133 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ¬ (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))
155154pm2.21d 119 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈))
156155expr 448 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐶 < 𝑦 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈)))
157156com23 86 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → (𝐶 < 𝑦 → ¬ (𝐹𝐶) < 𝑈)))
158157impd 398 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦) → ¬ (𝐹𝐶) < 𝑈))
159119, 158syl5 34 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
160159rexlimdva 3178 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
161117, 160syl5 34 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
162116, 161mpan2d 685 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
16350, 162syld 47 . . . 4 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
164163rexlimdva 3178 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
16547, 164mpd 15 . 2 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ¬ (𝐹𝐶) < 𝑈)
166165pm2.01da 833 1 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  wss 3734  c0 4081  ifcif 4245   class class class wbr 4811  cfv 6070  (class class class)co 6844  supcsup 8555  cc 10189  cr 10190   + caddc 10194  *cxr 10329   < clt 10330  cle 10331  cmin 10522   / cdiv 10940  2c2 11329  +crp 12031  [,]cicc 12383  abscabs 14262  cnccncf 22961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-map 8064  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-icc 12387  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-cncf 22963
This theorem is referenced by:  ivthlem3  23514
  Copyright terms: Public domain W3C validator