MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem2 Structured version   Visualization version   GIF version

Theorem ivthlem2 24816
Description: Lemma for ivth 24818. Show that the supremum of 𝑆 cannot be less than 𝑈. If it was, continuity of 𝐹 implies that there are points just above the supremum that are also less than 𝑈, a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
ivth.11 𝐶 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
ivthlem2 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝑆   𝑥,𝑈

Proof of Theorem ivthlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . . . 5 (𝜑𝐹 ∈ (𝐷cn→ℂ))
21adantr 481 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐹 ∈ (𝐷cn→ℂ))
3 ivth.5 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
4 ivth.11 . . . . . . . 8 𝐶 = sup(𝑆, ℝ, < )
5 ivth.10 . . . . . . . . . . 11 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
65ssrab3 4040 . . . . . . . . . 10 𝑆 ⊆ (𝐴[,]𝐵)
7 ivth.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
8 ivth.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
9 iccssre 13346 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
107, 8, 9syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
116, 10sstrid 3955 . . . . . . . . 9 (𝜑𝑆 ⊆ ℝ)
12 ivth.3 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℝ)
13 ivth.4 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
14 ivth.8 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
15 ivth.9 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
167, 8, 12, 13, 3, 1, 14, 15, 5ivthlem1 24815 . . . . . . . . . . 11 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
1716simpld 495 . . . . . . . . . 10 (𝜑𝐴𝑆)
1817ne0d 4295 . . . . . . . . 9 (𝜑𝑆 ≠ ∅)
1916simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
20 brralrspcev 5165 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ ∀𝑧𝑆 𝑧𝐵) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
218, 19, 20syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
2211, 18, 21suprcld 12118 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
234, 22eqeltrid 2842 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2411, 18, 21, 17suprubd 12117 . . . . . . . 8 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
2524, 4breqtrrdi 5147 . . . . . . 7 (𝜑𝐴𝐶)
2611, 18, 213jca 1128 . . . . . . . . . 10 (𝜑 → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
27 suprleub 12121 . . . . . . . . . 10 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
2826, 8, 27syl2anc 584 . . . . . . . . 9 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
2919, 28mpbird 256 . . . . . . . 8 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
304, 29eqbrtrid 5140 . . . . . . 7 (𝜑𝐶𝐵)
31 elicc2 13329 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
327, 8, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
3323, 25, 30, 32mpbir3and 1342 . . . . . 6 (𝜑𝐶 ∈ (𝐴[,]𝐵))
343, 33sseldd 3945 . . . . 5 (𝜑𝐶𝐷)
3534adantr 481 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → 𝐶𝐷)
36 fveq2 6842 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
3736eleq1d 2822 . . . . . . 7 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐶) ∈ ℝ))
3814ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
3937, 38, 33rspcdva 3582 . . . . . 6 (𝜑 → (𝐹𝐶) ∈ ℝ)
40 difrp 12953 . . . . . 6 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4139, 12, 40syl2anc 584 . . . . 5 (𝜑 → ((𝐹𝐶) < 𝑈 ↔ (𝑈 − (𝐹𝐶)) ∈ ℝ+))
4241biimpa 477 . . . 4 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝑈 − (𝐹𝐶)) ∈ ℝ+)
43 cncfi 24257 . . . 4 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝐶𝐷 ∧ (𝑈 − (𝐹𝐶)) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
442, 35, 42, 43syl3anc 1371 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))))
45 ssralv 4010 . . . . . . 7 ((𝐴[,]𝐵) ⊆ 𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
463, 45syl 17 . . . . . 6 (𝜑 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
4746ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))))
488ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐵 ∈ ℝ)
4923ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ∈ ℝ)
50 rphalfcl 12942 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
5150adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ+)
5251rpred 12957 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) ∈ ℝ)
5349, 52readdcld 11184 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) ∈ ℝ)
5448, 53ifcld 4532 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ)
557ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ∈ ℝ)
5625ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴𝐶)
5715simprd 496 . . . . . . . . . . . . . . 15 (𝜑𝑈 < (𝐹𝐵))
58 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
5958eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
607rexrd 11205 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
618rexrd 11205 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
627, 8, 13ltled 11303 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
63 ubicc2 13382 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6460, 61, 62, 63syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6559, 38, 64rspcdva 3582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝐵) ∈ ℝ)
66 lttr 11231 . . . . . . . . . . . . . . . 16 (((𝐹𝐶) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
6739, 12, 65, 66syl3anc 1371 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝐶) < 𝑈𝑈 < (𝐹𝐵)) → (𝐹𝐶) < (𝐹𝐵)))
6857, 67mpan2d 692 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < 𝑈 → (𝐹𝐶) < (𝐹𝐵)))
6968imp 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (𝐹𝐶) < (𝐹𝐵))
7069adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐹𝐶) < (𝐹𝐵))
7139ltnrd 11289 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝐶) < (𝐹𝐶))
72 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝐵 = 𝐶 → (𝐹𝐵) = (𝐹𝐶))
7372breq2d 5117 . . . . . . . . . . . . . . . . . 18 (𝐵 = 𝐶 → ((𝐹𝐶) < (𝐹𝐵) ↔ (𝐹𝐶) < (𝐹𝐶)))
7473notbid 317 . . . . . . . . . . . . . . . . 17 (𝐵 = 𝐶 → (¬ (𝐹𝐶) < (𝐹𝐵) ↔ ¬ (𝐹𝐶) < (𝐹𝐶)))
7571, 74syl5ibrcom 246 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 = 𝐶 → ¬ (𝐹𝐶) < (𝐹𝐵)))
7675necon2ad 2958 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐵𝐶))
7776, 30jctild 526 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → (𝐶𝐵𝐵𝐶)))
7823, 8ltlend 11300 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 < 𝐵 ↔ (𝐶𝐵𝐵𝐶)))
7977, 78sylibrd 258 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8079ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
8170, 80mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < 𝐵)
8249, 51ltaddrpd 12990 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < (𝐶 + (𝑧 / 2)))
83 breq2 5109 . . . . . . . . . . . 12 (𝐵 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝐵𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
84 breq2 5109 . . . . . . . . . . . 12 ((𝐶 + (𝑧 / 2)) = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < (𝐶 + (𝑧 / 2)) ↔ 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
8583, 84ifboth 4525 . . . . . . . . . . 11 ((𝐶 < 𝐵𝐶 < (𝐶 + (𝑧 / 2))) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8681, 82, 85syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8749, 54, 86ltled 11303 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐶 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
8855, 49, 54, 56, 87letrd 11312 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))
89 min1 13108 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
9048, 53, 89syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)
91 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
927, 8, 91syl2anc 584 . . . . . . . . 9 (𝜑 → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9392ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ↔ (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ ℝ ∧ 𝐴 ≤ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∧ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ 𝐵)))
9454, 88, 90, 93mpbir3and 1342 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵))
9549, 54, 87abssubge0d 15316 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) = (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶))
96 rpre 12923 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
9796adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
9849, 97readdcld 11184 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + 𝑧) ∈ ℝ)
99 min2 13109 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (𝐶 + (𝑧 / 2)) ∈ ℝ) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
10048, 53, 99syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ≤ (𝐶 + (𝑧 / 2)))
101 rphalflt 12944 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → (𝑧 / 2) < 𝑧)
102101adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝑧 / 2) < 𝑧)
10352, 97, 49, 102ltadd2dd 11314 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (𝐶 + (𝑧 / 2)) < (𝐶 + 𝑧))
10454, 53, 98, 100, 103lelttrd 11313 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧))
10554, 49, 97ltsubadd2d 11753 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧 ↔ if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) < (𝐶 + 𝑧)))
106104, 105mpbird 256 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶) < 𝑧)
10795, 106eqbrtrd 5127 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧)
108 fvoveq1 7380 . . . . . . . . . 10 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (abs‘(𝑦𝐶)) = (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)))
109108breq1d 5115 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → ((abs‘(𝑦𝐶)) < 𝑧 ↔ (abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧))
110 breq2 5109 . . . . . . . . 9 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (𝐶 < 𝑦𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2)))))
111109, 110anbi12d 631 . . . . . . . 8 (𝑦 = if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) ↔ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))))
112111rspcev 3581 . . . . . . 7 ((if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) ∈ (𝐴[,]𝐵) ∧ ((abs‘(if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))) − 𝐶)) < 𝑧𝐶 < if(𝐵 ≤ (𝐶 + (𝑧 / 2)), 𝐵, (𝐶 + (𝑧 / 2))))) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
11394, 107, 86, 112syl12anc 835 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦))
114 r19.29 3117 . . . . . . 7 ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)))
115 pm3.45 622 . . . . . . . . . 10 (((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → (((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦)))
116115imp 407 . . . . . . . . 9 ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦))
117 simprr 771 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 < 𝑦)
118 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
119118eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
120 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝜑)
121120, 38syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
122 simprl 769 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
123119, 121, 122rspcdva 3582 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
124120, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℝ)
125120, 12syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℝ)
126125, 124resubcld 11583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑈 − (𝐹𝐶)) ∈ ℝ)
127123, 124, 126absdifltd 15318 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ↔ (((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))))))
128 ltle 11243 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
129123, 125, 128syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < 𝑈 → (𝐹𝑦) ≤ 𝑈))
130124recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐹𝐶) ∈ ℂ)
131125recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑈 ∈ ℂ)
132130, 131pncan3d 11515 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) = 𝑈)
133132breq2d 5117 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) ↔ (𝐹𝑦) < 𝑈))
134118breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝑦) ≤ 𝑈))
135134, 5elrab2 3648 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑆 ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ≤ 𝑈))
136135baib 536 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴[,]𝐵) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
137136ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 ↔ (𝐹𝑦) ≤ 𝑈))
138129, 133, 1373imtr4d 293 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → 𝑦𝑆))
139 suprub 12116 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦 ≤ sup(𝑆, ℝ, < ))
140139, 4breqtrrdi 5147 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦𝐶)
141140ex 413 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → (𝑦𝑆𝑦𝐶))
142120, 26, 1413syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆𝑦𝐶))
143120, 10syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝐴[,]𝐵) ⊆ ℝ)
144143, 122sseldd 3945 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝑦 ∈ ℝ)
145120, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → 𝐶 ∈ ℝ)
146144, 145lenltd 11301 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝐶 ↔ ¬ 𝐶 < 𝑦))
147142, 146sylibd 238 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → (𝑦𝑆 → ¬ 𝐶 < 𝑦))
148138, 147syld 47 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶))) → ¬ 𝐶 < 𝑦))
149148adantld 491 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((((𝐹𝐶) − (𝑈 − (𝐹𝐶))) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + (𝑈 − (𝐹𝐶)))) → ¬ 𝐶 < 𝑦))
150127, 149sylbid 239 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ 𝐶 < 𝑦))
151117, 150mt2d 136 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ¬ (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)))
152151pm2.21d 121 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝐶 < 𝑦)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈))
153152expr 457 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐶 < 𝑦 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) → ¬ (𝐹𝐶) < 𝑈)))
154153impcomd 412 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶)) ∧ 𝐶 < 𝑦) → ¬ (𝐹𝐶) < 𝑈))
155116, 154syl5 34 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
156155rexlimdva 3152 . . . . . . 7 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
157114, 156syl5 34 . . . . . 6 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝐶 < 𝑦)) → ¬ (𝐹𝐶) < 𝑈))
158113, 157mpan2d 692 . . . . 5 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
15947, 158syld 47 . . . 4 (((𝜑 ∧ (𝐹𝐶) < 𝑈) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
160159rexlimdva 3152 . . 3 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → (∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < (𝑈 − (𝐹𝐶))) → ¬ (𝐹𝐶) < 𝑈))
16144, 160mpd 15 . 2 ((𝜑 ∧ (𝐹𝐶) < 𝑈) → ¬ (𝐹𝐶) < 𝑈)
162161pm2.01da 797 1 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  wss 3910  c0 4282  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  +crp 12915  [,]cicc 13267  abscabs 15119  cnccncf 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-cncf 24241
This theorem is referenced by:  ivthlem3  24817
  Copyright terms: Public domain W3C validator