![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predel | Structured version Visualization version GIF version |
Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
Ref | Expression |
---|---|
predel | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4196 | . 2 ⊢ (𝑌 ∈ (𝐴 ∩ (◡𝑅 “ {𝑋})) → 𝑌 ∈ 𝐴) | |
2 | df-pred 6301 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | 1, 2 | eleq2s 2852 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3948 {csn 4629 ◡ccnv 5676 “ cima 5680 Predcpred 6300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-pred 6301 |
This theorem is referenced by: predtrss 6324 predpoirr 6335 predfrirr 6336 xpord2pred 8131 |
Copyright terms: Public domain | W3C validator |