![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predel | Structured version Visualization version GIF version |
Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
Ref | Expression |
---|---|
predel | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4224 | . 2 ⊢ (𝑌 ∈ (𝐴 ∩ (◡𝑅 “ {𝑋})) → 𝑌 ∈ 𝐴) | |
2 | df-pred 6332 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | 1, 2 | eleq2s 2862 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 {csn 4648 ◡ccnv 5699 “ cima 5703 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-pred 6332 |
This theorem is referenced by: predtrss 6354 predpoirr 6365 predfrirr 6366 xpord2pred 8186 |
Copyright terms: Public domain | W3C validator |