Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predel | Structured version Visualization version GIF version |
Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
Ref | Expression |
---|---|
predel | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4133 | . 2 ⊢ (𝑌 ∈ (𝐴 ∩ (◡𝑅 “ {𝑋})) → 𝑌 ∈ 𝐴) | |
2 | df-pred 6199 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | 1, 2 | eleq2s 2858 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3890 {csn 4566 ◡ccnv 5587 “ cima 5591 Predcpred 6198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-pred 6199 |
This theorem is referenced by: predtrss 6222 predpoirr 6233 predfrirr 6234 dftrpred3g 9464 xpord2pred 33771 |
Copyright terms: Public domain | W3C validator |