MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predel Structured version   Visualization version   GIF version

Theorem predel 6315
Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
predel (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)

Proof of Theorem predel
StepHypRef Expression
1 elinel1 4181 . 2 (𝑌 ∈ (𝐴 ∩ (𝑅 “ {𝑋})) → 𝑌𝐴)
2 df-pred 6295 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
31, 2eleq2s 2853 1 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3930  {csn 4606  ccnv 5658  cima 5662  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938  df-pred 6295
This theorem is referenced by:  predtrss  6316  predpoirr  6327  predfrirr  6328  xpord2pred  8149
  Copyright terms: Public domain W3C validator