| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predel | Structured version Visualization version GIF version | ||
| Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
| Ref | Expression |
|---|---|
| predel | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4181 | . 2 ⊢ (𝑌 ∈ (𝐴 ∩ (◡𝑅 “ {𝑋})) → 𝑌 ∈ 𝐴) | |
| 2 | df-pred 6295 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 3 | 1, 2 | eleq2s 2853 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3930 {csn 4606 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-pred 6295 |
| This theorem is referenced by: predtrss 6316 predpoirr 6327 predfrirr 6328 xpord2pred 8149 |
| Copyright terms: Public domain | W3C validator |