MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predel Structured version   Visualization version   GIF version

Theorem predel 6220
Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
predel (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)

Proof of Theorem predel
StepHypRef Expression
1 elinel1 4133 . 2 (𝑌 ∈ (𝐴 ∩ (𝑅 “ {𝑋})) → 𝑌𝐴)
2 df-pred 6199 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
31, 2eleq2s 2858 1 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cin 3890  {csn 4566  ccnv 5587  cima 5591  Predcpred 6198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-pred 6199
This theorem is referenced by:  predtrss  6222  predpoirr  6233  predfrirr  6234  dftrpred3g  9464  xpord2pred  33771
  Copyright terms: Public domain W3C validator