| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predel | Structured version Visualization version GIF version | ||
| Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
| Ref | Expression |
|---|---|
| predel | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4151 | . 2 ⊢ (𝑌 ∈ (𝐴 ∩ (◡𝑅 “ {𝑋})) → 𝑌 ∈ 𝐴) | |
| 2 | df-pred 6248 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 3 | 1, 2 | eleq2s 2849 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3901 {csn 4576 ◡ccnv 5615 “ cima 5619 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-pred 6248 |
| This theorem is referenced by: predtrss 6269 predpoirr 6280 predfrirr 6281 xpord2pred 8075 |
| Copyright terms: Public domain | W3C validator |