![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpoirr | Structured version Visualization version GIF version |
Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) |
Ref | Expression |
---|---|
predpoirr | ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5593 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋𝑅𝑋) | |
2 | elpredg 6308 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) | |
3 | 2 | anidms 566 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋)) |
5 | 1, 4 | imbitrrid 245 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
6 | 5 | expd 415 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))) |
7 | 6 | pm2.43b 55 | . 2 ⊢ (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
8 | predel 6315 | . . 3 ⊢ (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋 ∈ 𝐴) | |
9 | 8 | con3i 154 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
10 | 7, 9 | pm2.61d1 180 | 1 ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 class class class wbr 5141 Po wpo 5579 Predcpred 6293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-po 5581 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 |
This theorem is referenced by: xpord2indlem 8133 xpord3inddlem 8140 |
Copyright terms: Public domain | W3C validator |