![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpoirr | Structured version Visualization version GIF version |
Description: Given a partial ordering, 𝑋 is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) |
Ref | Expression |
---|---|
predpoirr | ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5244 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋𝑅𝑋) | |
2 | elpredg 5912 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) | |
3 | 2 | anidms 563 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) |
4 | 3 | notbid 310 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋)) |
5 | 1, 4 | syl5ibr 238 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
6 | 5 | expd 405 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))) |
7 | 6 | pm2.43b 55 | . 2 ⊢ (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
8 | predel 5915 | . . 3 ⊢ (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋 ∈ 𝐴) | |
9 | 8 | con3i 152 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
10 | 7, 9 | pm2.61d1 173 | 1 ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 Po wpo 5231 Predcpred 5897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-po 5233 df-xp 5318 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |