![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpoirr | Structured version Visualization version GIF version |
Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) |
Ref | Expression |
---|---|
predpoirr | ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5558 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋𝑅𝑋) | |
2 | elpredg 6268 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) | |
3 | 2 | anidms 568 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋)) |
5 | 1, 4 | imbitrrid 245 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
6 | 5 | expd 417 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))) |
7 | 6 | pm2.43b 55 | . 2 ⊢ (𝑅 Po 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
8 | predel 6275 | . . 3 ⊢ (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋 ∈ 𝐴) | |
9 | 8 | con3i 154 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
10 | 7, 9 | pm2.61d1 180 | 1 ⊢ (𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5106 Po wpo 5544 Predcpred 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-po 5546 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 |
This theorem is referenced by: xpord2indlem 8080 xpord3inddlem 8087 |
Copyright terms: Public domain | W3C validator |