![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predbrg | Structured version Visualization version GIF version |
Description: Closed form of elpredim 5911. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) |
Ref | Expression |
---|---|
predbrg | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 5903 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
2 | 1 | eleq2d 2865 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))) |
3 | breq2 4848 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑌𝑅𝑥 ↔ 𝑌𝑅𝑋)) | |
4 | 2, 3 | imbi12d 336 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) ↔ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))) |
5 | vex 3389 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | elpredim 5911 | . . 3 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) |
7 | 4, 6 | vtoclg 3454 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)) |
8 | 7 | imp 396 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4844 Predcpred 5898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-br 4845 df-opab 4907 df-xp 5319 df-cnv 5321 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |