MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predbrg Structured version   Visualization version   GIF version

Theorem predbrg 6322
Description: Closed form of elpredim 6316. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.)
Assertion
Ref Expression
predbrg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem predbrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 predeq3 6304 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
21eleq2d 2819 . . . 4 (𝑥 = 𝑋 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
3 breq2 5152 . . . 4 (𝑥 = 𝑋 → (𝑌𝑅𝑥𝑌𝑅𝑋))
42, 3imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) ↔ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)))
5 vex 3478 . . . 4 𝑥 ∈ V
65elpredim 6316 . . 3 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥)
74, 6vtoclg 3556 . 2 (𝑋𝑉 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
87imp 407 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5148  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300
This theorem is referenced by:  predtrss  6323
  Copyright terms: Public domain W3C validator