Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predbrg | Structured version Visualization version GIF version |
Description: Closed form of elpredim 6207. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) |
Ref | Expression |
---|---|
predbrg | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 6195 | . . . . 5 ⊢ (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋)) | |
2 | 1 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋))) |
3 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑌𝑅𝑥 ↔ 𝑌𝑅𝑋)) | |
4 | 2, 3 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) ↔ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))) |
5 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
6 | 5 | elpredim 6207 | . . 3 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) |
7 | 4, 6 | vtoclg 3495 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)) |
8 | 7 | imp 406 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: predtrss 6214 |
Copyright terms: Public domain | W3C validator |