MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpred Structured version   Visualization version   GIF version

Theorem elpred 6265
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Hypothesis
Ref Expression
elpred.1 𝑌 ∈ V
Assertion
Ref Expression
elpred (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpred
StepHypRef Expression
1 elpred.1 . 2 𝑌 ∈ V
2 elpredgg 6261 . 2 ((𝑋𝐷𝑌 ∈ V) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
31, 2mpan2 691 1 (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436   class class class wbr 5091  Predcpred 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248
This theorem is referenced by:  predtrss  6269  setlikespec  6272  preddowncl  6279  xpord2pred  8075  xpord3pred  8082  fprlem2  8231  ttrclselem2  9616  ttrclse  9617  preduz  13550  predfz  13553  onsis  28209  wzel  35864  wsuclem  35865
  Copyright terms: Public domain W3C validator