MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpred Structured version   Visualization version   GIF version

Theorem elpred 6158
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.)
Hypothesis
Ref Expression
elpred.1 𝑌 ∈ V
Assertion
Ref Expression
elpred (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpred
StepHypRef Expression
1 df-pred 6145 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 4177 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elpred.1 . . . 4 𝑌 ∈ V
43eliniseg 5955 . . 3 (𝑋𝐷 → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑌𝑅𝑋))
54anbi2d 628 . 2 (𝑋𝐷 → ((𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})) ↔ (𝑌𝐴𝑌𝑅𝑋)))
62, 5syl5bb 284 1 (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2107  Vcvv 3499  {csn 4563   class class class wbr 5062  ccnv 5552  cima 5556  Predcpred 6144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-br 5063  df-opab 5125  df-xp 5559  df-cnv 5561  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145
This theorem is referenced by:  predpo  6163  setlikespec  6166  preddowncl  6172  wfrlem10  7958  preduz  13022  predfz  13025  wzel  32997  wsuclem  32998  fprlem2  33024
  Copyright terms: Public domain W3C validator