MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpred Structured version   Visualization version   GIF version

Theorem elpred 5880
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.)
Hypothesis
Ref Expression
elpred.1 𝑌 ∈ V
Assertion
Ref Expression
elpred (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpred
StepHypRef Expression
1 df-pred 5867 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 3965 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elpred.1 . . . 4 𝑌 ∈ V
43eliniseg 5678 . . 3 (𝑋𝐷 → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑌𝑅𝑋))
54anbi2d 622 . 2 (𝑋𝐷 → ((𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})) ↔ (𝑌𝐴𝑌𝑅𝑋)))
62, 5syl5bb 274 1 (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wcel 2155  Vcvv 3350  {csn 4336   class class class wbr 4811  ccnv 5278  cima 5282  Predcpred 5866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-xp 5285  df-cnv 5287  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867
This theorem is referenced by:  predpo  5885  setlikespec  5888  preddowncl  5894  wfrlem10  7630  preduz  12672  predfz  12675  wzel  32216  wsuclem  32217
  Copyright terms: Public domain W3C validator