| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpred | Structured version Visualization version GIF version | ||
| Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| elpred.1 | ⊢ 𝑌 ∈ V |
| Ref | Expression |
|---|---|
| elpred | ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpred.1 | . 2 ⊢ 𝑌 ∈ V | |
| 2 | elpredgg 6261 | . 2 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ V) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 |
| This theorem is referenced by: predtrss 6269 setlikespec 6272 preddowncl 6279 xpord2pred 8075 xpord3pred 8082 fprlem2 8231 ttrclselem2 9616 ttrclse 9617 preduz 13550 predfz 13553 onsis 28209 wzel 35864 wsuclem 35865 |
| Copyright terms: Public domain | W3C validator |