| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpred | Structured version Visualization version GIF version | ||
| Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| elpred.1 | ⊢ 𝑌 ∈ V |
| Ref | Expression |
|---|---|
| elpred | ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpred.1 | . 2 ⊢ 𝑌 ∈ V | |
| 2 | elpredgg 6287 | . 2 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ V) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: predtrss 6295 setlikespec 6298 preddowncl 6305 xpord2pred 8124 xpord3pred 8131 fprlem2 8280 ttrclselem2 9679 ttrclse 9680 preduz 13611 predfz 13614 onsis 28172 wzel 35812 wsuclem 35813 |
| Copyright terms: Public domain | W3C validator |