MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpred Structured version   Visualization version   GIF version

Theorem elpred 5836
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.)
Hypothesis
Ref Expression
elpred.1 𝑌 ∈ V
Assertion
Ref Expression
elpred (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpred
StepHypRef Expression
1 df-pred 5823 . . 3 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
21elin2 3950 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})))
3 elpred.1 . . . 4 𝑌 ∈ V
43eliniseg 5635 . . 3 (𝑋𝐷 → (𝑌 ∈ (𝑅 “ {𝑋}) ↔ 𝑌𝑅𝑋))
54anbi2d 606 . 2 (𝑋𝐷 → ((𝑌𝐴𝑌 ∈ (𝑅 “ {𝑋})) ↔ (𝑌𝐴𝑌𝑅𝑋)))
62, 5syl5bb 272 1 (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2144  Vcvv 3349  {csn 4314   class class class wbr 4784  ccnv 5248  cima 5252  Predcpred 5822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823
This theorem is referenced by:  predpo  5841  setlikespec  5844  preddowncl  5850  wfrlem10  7576  preduz  12668  predfz  12671  wzel  32100  wsuclem  32101
  Copyright terms: Public domain W3C validator