| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4213 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2826 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3484 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5317 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 |
| This theorem is referenced by: inex2g 5320 dmresexg 6032 predexg 6339 onin 6415 offval 7706 offval3 8007 frrlem13 8323 onsdominel 9166 ssenen 9191 inelfi 9458 fiin 9462 tskwe 9990 dfac8b 10071 ac10ct 10074 infpwfien 10102 fictb 10284 canthnum 10689 gruina 10858 ressinbas 17291 ressress 17293 qusin 17589 catcbas 18146 fpwipodrs 18585 psss 18625 gsumzres 19927 dfrngc2 20628 rnghmsscmap2 20629 dfringc2 20657 rhmsscmap2 20658 rhmsscrnghm 20665 rngcresringcat 20669 srhmsubc 20680 rngcrescrhm 20684 fldc 20785 fldhmsubc 20786 eltg 22964 eltg3 22969 ntrval 23044 restco 23172 restfpw 23187 ordtrest 23210 ordtrest2lem 23211 ordtrest2 23212 cnrmi 23368 restcnrm 23370 kgeni 23545 tsmsfbas 24136 eltsms 24141 tsmsres 24152 caussi 25331 causs 25332 elpwincl1 32544 disjdifprg2 32589 sigainb 34137 ldgenpisyslem1 34164 carsgclctun 34323 eulerpartlemgs2 34382 sseqval 34390 reprinrn 34633 bnj1177 35020 cvmsss2 35279 satef 35421 satefvfmla0 35423 fnemeet2 36368 ontgval 36432 bj-discrmoore 37112 bj-ideqb 37160 bj-opelidres 37162 bj-opelidb1ALT 37167 fin2so 37614 inex3 38339 inxpex 38340 dfrefrels2 38514 dfsymrels2 38546 dftrrels2 38576 elrfi 42705 ofoafg 43367 fourierdlem71 46192 fourierdlem80 46201 sge0less 46407 sge0ssre 46412 carageniuncllem2 46537 rngcbasALTV 48182 rngcrescrhmALTV 48196 ringcbasALTV 48216 srhmsubcALTV 48241 fldcALTV 48248 fldhmsubcALTV 48249 |
| Copyright terms: Public domain | W3C validator |