Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4136 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 5236 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3495 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: inex2g 5239 dmresexg 5904 predexg 6209 onin 6282 offval 7520 offval3 7798 frrlem13 8085 onsdominel 8862 ssenen 8887 inelfi 9107 fiin 9111 tskwe 9639 dfac8b 9718 ac10ct 9721 infpwfien 9749 fictb 9932 canthnum 10336 gruina 10505 ressinbas 16881 ressress 16884 qusin 17172 catcbas 17732 fpwipodrs 18173 psss 18213 gsumzres 19425 eltg 22015 eltg3 22020 ntrval 22095 restco 22223 restfpw 22238 ordtrest 22261 ordtrest2lem 22262 ordtrest2 22263 cnrmi 22419 restcnrm 22421 kgeni 22596 tsmsfbas 23187 eltsms 23192 tsmsres 23203 caussi 24366 causs 24367 elpwincl1 30775 disjdifprg2 30816 sigainb 32004 ldgenpisyslem1 32031 carsgclctun 32188 eulerpartlemgs2 32247 sseqval 32255 reprinrn 32498 bnj1177 32886 cvmsss2 33136 satef 33278 satefvfmla0 33280 fnemeet2 34483 ontgval 34547 bj-discrmoore 35209 bj-ideqb 35257 bj-opelidres 35259 bj-opelidb1ALT 35264 fin2so 35691 inex3 36400 inxpex 36401 dfrefrels2 36558 dfsymrels2 36586 dftrrels2 36616 elrfi 40432 iunrelexp0 41199 fourierdlem71 43608 fourierdlem80 43617 sge0less 43820 sge0ssre 43825 carageniuncllem2 43950 dfrngc2 45418 rnghmsscmap2 45419 rngcbasALTV 45429 dfringc2 45464 rhmsscmap2 45465 rhmsscrnghm 45472 rngcresringcat 45476 ringcbasALTV 45492 srhmsubc 45522 fldc 45529 fldhmsubc 45530 rngcrescrhm 45531 srhmsubcALTV 45540 fldcALTV 45547 fldhmsubcALTV 45548 rngcrescrhmALTV 45549 |
Copyright terms: Public domain | W3C validator |