| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4160 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5253 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: inex2g 5256 dmresexg 5962 predexg 6266 onin 6337 offval 7619 offval3 7914 frrlem13 8228 onsdominel 9039 ssenen 9064 inelfi 9302 fiin 9306 tskwe 9843 dfac8b 9922 ac10ct 9925 infpwfien 9953 fictb 10135 canthnum 10540 gruina 10709 ressinbas 17156 ressress 17158 qusin 17448 catcbas 18008 fpwipodrs 18446 psss 18486 gsumzres 19821 dfrngc2 20543 rnghmsscmap2 20544 dfringc2 20572 rhmsscmap2 20573 rhmsscrnghm 20580 rngcresringcat 20584 srhmsubc 20595 rngcrescrhm 20599 fldc 20699 fldhmsubc 20700 eltg 22872 eltg3 22877 ntrval 22951 restco 23079 restfpw 23094 ordtrest 23117 ordtrest2lem 23118 ordtrest2 23119 cnrmi 23275 restcnrm 23277 kgeni 23452 tsmsfbas 24043 eltsms 24048 tsmsres 24059 caussi 25224 causs 25225 elpwincl1 32505 disjdifprg2 32556 sigainb 34149 ldgenpisyslem1 34176 carsgclctun 34334 eulerpartlemgs2 34393 sseqval 34401 reprinrn 34631 bnj1177 35018 cvmsss2 35318 satef 35460 satefvfmla0 35462 fnemeet2 36411 ontgval 36475 bj-discrmoore 37155 bj-ideqb 37203 bj-opelidres 37205 bj-opelidb1ALT 37210 fin2so 37657 inex3 38380 inxpex 38381 dfrefrels2 38615 dfsymrels2 38647 dftrrels2 38681 elrfi 42797 ofoafg 43457 fourierdlem71 46285 fourierdlem80 46294 sge0less 46500 sge0ssre 46505 carageniuncllem2 46630 rngcbasALTV 48376 rngcrescrhmALTV 48390 ringcbasALTV 48410 srhmsubcALTV 48435 fldcALTV 48442 fldhmsubcALTV 48443 |
| Copyright terms: Public domain | W3C validator |