| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4193 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2820 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3468 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5292 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 |
| This theorem is referenced by: inex2g 5295 dmresexg 6006 predexg 6313 onin 6388 offval 7685 offval3 7986 frrlem13 8302 onsdominel 9145 ssenen 9170 inelfi 9435 fiin 9439 tskwe 9969 dfac8b 10050 ac10ct 10053 infpwfien 10081 fictb 10263 canthnum 10668 gruina 10837 ressinbas 17271 ressress 17273 qusin 17563 catcbas 18119 fpwipodrs 18555 psss 18595 gsumzres 19895 dfrngc2 20593 rnghmsscmap2 20594 dfringc2 20622 rhmsscmap2 20623 rhmsscrnghm 20630 rngcresringcat 20634 srhmsubc 20645 rngcrescrhm 20649 fldc 20749 fldhmsubc 20750 eltg 22900 eltg3 22905 ntrval 22979 restco 23107 restfpw 23122 ordtrest 23145 ordtrest2lem 23146 ordtrest2 23147 cnrmi 23303 restcnrm 23305 kgeni 23480 tsmsfbas 24071 eltsms 24076 tsmsres 24087 caussi 25254 causs 25255 elpwincl1 32511 disjdifprg2 32562 sigainb 34172 ldgenpisyslem1 34199 carsgclctun 34358 eulerpartlemgs2 34417 sseqval 34425 reprinrn 34655 bnj1177 35042 cvmsss2 35301 satef 35443 satefvfmla0 35445 fnemeet2 36390 ontgval 36454 bj-discrmoore 37134 bj-ideqb 37182 bj-opelidres 37184 bj-opelidb1ALT 37189 fin2so 37636 inex3 38361 inxpex 38362 dfrefrels2 38536 dfsymrels2 38568 dftrrels2 38598 elrfi 42684 ofoafg 43345 fourierdlem71 46173 fourierdlem80 46182 sge0less 46388 sge0ssre 46393 carageniuncllem2 46518 rngcbasALTV 48208 rngcrescrhmALTV 48222 ringcbasALTV 48242 srhmsubcALTV 48267 fldcALTV 48274 fldhmsubcALTV 48275 |
| Copyright terms: Public domain | W3C validator |