Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4144 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3434 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 5244 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3503 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 |
This theorem is referenced by: inex2g 5247 dmresexg 5912 predexg 6217 onin 6294 offval 7533 offval3 7811 frrlem13 8098 onsdominel 8878 ssenen 8903 inelfi 9138 fiin 9142 tskwe 9692 dfac8b 9771 ac10ct 9774 infpwfien 9802 fictb 9985 canthnum 10389 gruina 10558 ressinbas 16936 ressress 16939 qusin 17236 catcbas 17797 fpwipodrs 18239 psss 18279 gsumzres 19491 eltg 22088 eltg3 22093 ntrval 22168 restco 22296 restfpw 22311 ordtrest 22334 ordtrest2lem 22335 ordtrest2 22336 cnrmi 22492 restcnrm 22494 kgeni 22669 tsmsfbas 23260 eltsms 23265 tsmsres 23276 caussi 24442 causs 24443 elpwincl1 30853 disjdifprg2 30894 sigainb 32083 ldgenpisyslem1 32110 carsgclctun 32267 eulerpartlemgs2 32326 sseqval 32334 reprinrn 32577 bnj1177 32965 cvmsss2 33215 satef 33357 satefvfmla0 33359 fnemeet2 34535 ontgval 34599 bj-discrmoore 35261 bj-ideqb 35309 bj-opelidres 35311 bj-opelidb1ALT 35316 fin2so 35743 inex3 36452 inxpex 36453 dfrefrels2 36610 dfsymrels2 36638 dftrrels2 36668 elrfi 40496 iunrelexp0 41263 fourierdlem71 43672 fourierdlem80 43681 sge0less 43884 sge0ssre 43889 carageniuncllem2 44014 dfrngc2 45482 rnghmsscmap2 45483 rngcbasALTV 45493 dfringc2 45528 rhmsscmap2 45529 rhmsscrnghm 45536 rngcresringcat 45540 ringcbasALTV 45556 srhmsubc 45586 fldc 45593 fldhmsubc 45594 rngcrescrhm 45595 srhmsubcALTV 45604 fldcALTV 45611 fldhmsubcALTV 45612 rngcrescrhmALTV 45613 |
Copyright terms: Public domain | W3C validator |