![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4234 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3492 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 5335 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: inex2g 5338 dmresexg 6043 predexg 6350 onin 6426 offval 7723 offval3 8023 frrlem13 8339 onsdominel 9192 ssenen 9217 inelfi 9487 fiin 9491 tskwe 10019 dfac8b 10100 ac10ct 10103 infpwfien 10131 fictb 10313 canthnum 10718 gruina 10887 ressinbas 17304 ressress 17307 qusin 17604 catcbas 18168 fpwipodrs 18610 psss 18650 gsumzres 19951 dfrngc2 20650 rnghmsscmap2 20651 dfringc2 20679 rhmsscmap2 20680 rhmsscrnghm 20687 rngcresringcat 20691 srhmsubc 20702 rngcrescrhm 20706 fldc 20807 fldhmsubc 20808 eltg 22985 eltg3 22990 ntrval 23065 restco 23193 restfpw 23208 ordtrest 23231 ordtrest2lem 23232 ordtrest2 23233 cnrmi 23389 restcnrm 23391 kgeni 23566 tsmsfbas 24157 eltsms 24162 tsmsres 24173 caussi 25350 causs 25351 elpwincl1 32555 disjdifprg2 32598 sigainb 34100 ldgenpisyslem1 34127 carsgclctun 34286 eulerpartlemgs2 34345 sseqval 34353 reprinrn 34595 bnj1177 34982 cvmsss2 35242 satef 35384 satefvfmla0 35386 fnemeet2 36333 ontgval 36397 bj-discrmoore 37077 bj-ideqb 37125 bj-opelidres 37127 bj-opelidb1ALT 37132 fin2so 37567 inex3 38294 inxpex 38295 dfrefrels2 38469 dfsymrels2 38501 dftrrels2 38531 elrfi 42650 ofoafg 43316 fourierdlem71 46098 fourierdlem80 46107 sge0less 46313 sge0ssre 46318 carageniuncllem2 46443 rngcbasALTV 47989 rngcrescrhmALTV 48003 ringcbasALTV 48023 srhmsubcALTV 48048 fldcALTV 48055 fldhmsubcALTV 48056 |
Copyright terms: Public domain | W3C validator |