![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4204 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3478 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 5316 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3954 |
This theorem is referenced by: inex2g 5319 dmresexg 6003 predexg 6315 onin 6392 offval 7675 offval3 7965 frrlem13 8279 onsdominel 9122 ssenen 9147 inelfi 9409 fiin 9413 tskwe 9941 dfac8b 10022 ac10ct 10025 infpwfien 10053 fictb 10236 canthnum 10640 gruina 10809 ressinbas 17186 ressress 17189 qusin 17486 catcbas 18047 fpwipodrs 18489 psss 18529 gsumzres 19771 eltg 22451 eltg3 22456 ntrval 22531 restco 22659 restfpw 22674 ordtrest 22697 ordtrest2lem 22698 ordtrest2 22699 cnrmi 22855 restcnrm 22857 kgeni 23032 tsmsfbas 23623 eltsms 23628 tsmsres 23639 caussi 24805 causs 24806 elpwincl1 31750 disjdifprg2 31794 sigainb 33122 ldgenpisyslem1 33149 carsgclctun 33308 eulerpartlemgs2 33367 sseqval 33375 reprinrn 33618 bnj1177 34005 cvmsss2 34253 satef 34395 satefvfmla0 34397 fnemeet2 35240 ontgval 35304 bj-discrmoore 35980 bj-ideqb 36028 bj-opelidres 36030 bj-opelidb1ALT 36035 fin2so 36463 inex3 37195 inxpex 37196 dfrefrels2 37371 dfsymrels2 37403 dftrrels2 37433 elrfi 41417 ofoafg 42089 fourierdlem71 44879 fourierdlem80 44888 sge0less 45094 sge0ssre 45099 carageniuncllem2 45224 dfrngc2 46823 rnghmsscmap2 46824 rngcbasALTV 46834 dfringc2 46869 rhmsscmap2 46870 rhmsscrnghm 46877 rngcresringcat 46881 ringcbasALTV 46897 srhmsubc 46927 fldc 46934 fldhmsubc 46935 rngcrescrhm 46936 srhmsubcALTV 46945 fldcALTV 46952 fldhmsubcALTV 46953 rngcrescrhmALTV 46954 |
Copyright terms: Public domain | W3C validator |