| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4176 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5272 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 |
| This theorem is referenced by: inex2g 5275 dmresexg 5985 predexg 6292 onin 6363 offval 7662 offval3 7961 frrlem13 8277 onsdominel 9090 ssenen 9115 inelfi 9369 fiin 9373 tskwe 9903 dfac8b 9984 ac10ct 9987 infpwfien 10015 fictb 10197 canthnum 10602 gruina 10771 ressinbas 17215 ressress 17217 qusin 17507 catcbas 18063 fpwipodrs 18499 psss 18539 gsumzres 19839 dfrngc2 20537 rnghmsscmap2 20538 dfringc2 20566 rhmsscmap2 20567 rhmsscrnghm 20574 rngcresringcat 20578 srhmsubc 20589 rngcrescrhm 20593 fldc 20693 fldhmsubc 20694 eltg 22844 eltg3 22849 ntrval 22923 restco 23051 restfpw 23066 ordtrest 23089 ordtrest2lem 23090 ordtrest2 23091 cnrmi 23247 restcnrm 23249 kgeni 23424 tsmsfbas 24015 eltsms 24020 tsmsres 24031 caussi 25197 causs 25198 elpwincl1 32454 disjdifprg2 32505 sigainb 34126 ldgenpisyslem1 34153 carsgclctun 34312 eulerpartlemgs2 34371 sseqval 34379 reprinrn 34609 bnj1177 34996 cvmsss2 35261 satef 35403 satefvfmla0 35405 fnemeet2 36355 ontgval 36419 bj-discrmoore 37099 bj-ideqb 37147 bj-opelidres 37149 bj-opelidb1ALT 37154 fin2so 37601 inex3 38320 inxpex 38321 dfrefrels2 38504 dfsymrels2 38536 dftrrels2 38566 elrfi 42682 ofoafg 43343 fourierdlem71 46175 fourierdlem80 46184 sge0less 46390 sge0ssre 46395 carageniuncllem2 46520 rngcbasALTV 48251 rngcrescrhmALTV 48265 ringcbasALTV 48285 srhmsubcALTV 48310 fldcALTV 48317 fldhmsubcALTV 48318 |
| Copyright terms: Public domain | W3C validator |