| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4172 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3448 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5267 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3517 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 |
| This theorem is referenced by: inex2g 5270 dmresexg 5974 predexg 6280 onin 6351 offval 7642 offval3 7940 frrlem13 8254 onsdominel 9067 ssenen 9092 inelfi 9345 fiin 9349 tskwe 9879 dfac8b 9960 ac10ct 9963 infpwfien 9991 fictb 10173 canthnum 10578 gruina 10747 ressinbas 17191 ressress 17193 qusin 17483 catcbas 18043 fpwipodrs 18481 psss 18521 gsumzres 19823 dfrngc2 20548 rnghmsscmap2 20549 dfringc2 20577 rhmsscmap2 20578 rhmsscrnghm 20585 rngcresringcat 20589 srhmsubc 20600 rngcrescrhm 20604 fldc 20704 fldhmsubc 20705 eltg 22877 eltg3 22882 ntrval 22956 restco 23084 restfpw 23099 ordtrest 23122 ordtrest2lem 23123 ordtrest2 23124 cnrmi 23280 restcnrm 23282 kgeni 23457 tsmsfbas 24048 eltsms 24053 tsmsres 24064 caussi 25230 causs 25231 elpwincl1 32504 disjdifprg2 32555 sigainb 34119 ldgenpisyslem1 34146 carsgclctun 34305 eulerpartlemgs2 34364 sseqval 34372 reprinrn 34602 bnj1177 34989 cvmsss2 35254 satef 35396 satefvfmla0 35398 fnemeet2 36348 ontgval 36412 bj-discrmoore 37092 bj-ideqb 37140 bj-opelidres 37142 bj-opelidb1ALT 37147 fin2so 37594 inex3 38313 inxpex 38314 dfrefrels2 38497 dfsymrels2 38529 dftrrels2 38559 elrfi 42675 ofoafg 43336 fourierdlem71 46168 fourierdlem80 46177 sge0less 46383 sge0ssre 46388 carageniuncllem2 46513 rngcbasALTV 48247 rngcrescrhmALTV 48261 ringcbasALTV 48281 srhmsubcALTV 48306 fldcALTV 48313 fldhmsubcALTV 48314 |
| Copyright terms: Public domain | W3C validator |