Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4140 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3437 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 5242 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3506 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∩ cin 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-in 3895 |
This theorem is referenced by: inex2g 5245 dmresexg 5918 predexg 6224 onin 6301 offval 7551 offval3 7834 frrlem13 8123 onsdominel 8922 ssenen 8947 inelfi 9186 fiin 9190 tskwe 9717 dfac8b 9796 ac10ct 9799 infpwfien 9827 fictb 10010 canthnum 10414 gruina 10583 ressinbas 16964 ressress 16967 qusin 17264 catcbas 17825 fpwipodrs 18267 psss 18307 gsumzres 19519 eltg 22116 eltg3 22121 ntrval 22196 restco 22324 restfpw 22339 ordtrest 22362 ordtrest2lem 22363 ordtrest2 22364 cnrmi 22520 restcnrm 22522 kgeni 22697 tsmsfbas 23288 eltsms 23293 tsmsres 23304 caussi 24470 causs 24471 elpwincl1 30883 disjdifprg2 30924 sigainb 32113 ldgenpisyslem1 32140 carsgclctun 32297 eulerpartlemgs2 32356 sseqval 32364 reprinrn 32607 bnj1177 32995 cvmsss2 33245 satef 33387 satefvfmla0 33389 fnemeet2 34565 ontgval 34629 bj-discrmoore 35291 bj-ideqb 35339 bj-opelidres 35341 bj-opelidb1ALT 35346 fin2so 35773 inex3 36480 inxpex 36481 dfrefrels2 36638 dfsymrels2 36666 dftrrels2 36696 elrfi 40523 iunrelexp0 41317 fourierdlem71 43725 fourierdlem80 43734 sge0less 43937 sge0ssre 43942 carageniuncllem2 44067 dfrngc2 45541 rnghmsscmap2 45542 rngcbasALTV 45552 dfringc2 45587 rhmsscmap2 45588 rhmsscrnghm 45595 rngcresringcat 45599 ringcbasALTV 45615 srhmsubc 45645 fldc 45652 fldhmsubc 45653 rngcrescrhm 45654 srhmsubcALTV 45663 fldcALTV 45670 fldhmsubcALTV 45671 rngcrescrhmALTV 45672 |
Copyright terms: Public domain | W3C validator |