| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version | ||
| Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4164 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 3 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | inex1 5256 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
| 5 | 2, 4 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 |
| This theorem is referenced by: inex2g 5259 dmresexg 5965 predexg 6267 onin 6338 offval 7622 offval3 7917 frrlem13 8231 onsdominel 9043 ssenen 9068 inelfi 9308 fiin 9312 tskwe 9846 dfac8b 9925 ac10ct 9928 infpwfien 9956 fictb 10138 canthnum 10543 gruina 10712 ressinbas 17156 ressress 17158 qusin 17448 catcbas 18008 fpwipodrs 18446 psss 18486 gsumzres 19788 dfrngc2 20513 rnghmsscmap2 20514 dfringc2 20542 rhmsscmap2 20543 rhmsscrnghm 20550 rngcresringcat 20554 srhmsubc 20565 rngcrescrhm 20569 fldc 20669 fldhmsubc 20670 eltg 22842 eltg3 22847 ntrval 22921 restco 23049 restfpw 23064 ordtrest 23087 ordtrest2lem 23088 ordtrest2 23089 cnrmi 23245 restcnrm 23247 kgeni 23422 tsmsfbas 24013 eltsms 24018 tsmsres 24029 caussi 25195 causs 25196 elpwincl1 32469 disjdifprg2 32520 sigainb 34103 ldgenpisyslem1 34130 carsgclctun 34289 eulerpartlemgs2 34348 sseqval 34356 reprinrn 34586 bnj1177 34973 cvmsss2 35251 satef 35393 satefvfmla0 35395 fnemeet2 36345 ontgval 36409 bj-discrmoore 37089 bj-ideqb 37137 bj-opelidres 37139 bj-opelidb1ALT 37144 fin2so 37591 inex3 38310 inxpex 38311 dfrefrels2 38494 dfsymrels2 38526 dftrrels2 38556 elrfi 42671 ofoafg 43331 fourierdlem71 46162 fourierdlem80 46171 sge0less 46377 sge0ssre 46382 carageniuncllem2 46507 rngcbasALTV 48254 rngcrescrhmALTV 48268 ringcbasALTV 48288 srhmsubcALTV 48313 fldcALTV 48320 fldhmsubcALTV 48321 |
| Copyright terms: Public domain | W3C validator |