| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prneli | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
| prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | 1, 2 | nelpri 4605 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| 4 | 3 | nelir 3035 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∉ wnel 3032 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: vdegp1ai 29515 |
| Copyright terms: Public domain | W3C validator |