MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneli Structured version   Visualization version   GIF version

Theorem prneli 4655
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using . (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
prneli.1 𝐴𝐵
prneli.2 𝐴𝐶
Assertion
Ref Expression
prneli 𝐴 ∉ {𝐵, 𝐶}

Proof of Theorem prneli
StepHypRef Expression
1 prneli.1 . . 3 𝐴𝐵
2 prneli.2 . . 3 𝐴𝐶
31, 2nelpri 4654 . 2 ¬ 𝐴 ∈ {𝐵, 𝐶}
43nelir 3048 1 𝐴 ∉ {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wne 2939  wnel 3045  {cpr 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-v 3481  df-un 3955  df-sn 4626  df-pr 4628
This theorem is referenced by:  vdegp1ai  29555
  Copyright terms: Public domain W3C validator