![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prneli | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
3 | 1, 2 | nelpri 4677 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
4 | 3 | nelir 3055 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∉ wnel 3052 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: vdegp1ai 29572 |
Copyright terms: Public domain | W3C validator |