| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prneli | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
| prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | 1, 2 | nelpri 4636 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| 4 | 3 | nelir 3040 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2933 ∉ wnel 3037 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: vdegp1ai 29521 |
| Copyright terms: Public domain | W3C validator |