Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prneli | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
3 | 1, 2 | nelpri 4595 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
4 | 3 | nelir 3053 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ∉ wnel 3050 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-nel 3051 df-v 3432 df-un 3896 df-sn 4567 df-pr 4569 |
This theorem is referenced by: vdegp1ai 27884 |
Copyright terms: Public domain | W3C validator |