![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prneli | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
3 | 1, 2 | nelpri 4660 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
4 | 3 | nelir 3047 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 ∉ wnel 3044 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: vdegp1ai 29569 |
Copyright terms: Public domain | W3C validator |