MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdegp1ai Structured version   Visualization version   GIF version

Theorem vdegp1ai 27318
Description: The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋𝑈𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.)
Hypotheses
Ref Expression
vdegp1ai.vg 𝑉 = (Vtx‘𝐺)
vdegp1ai.u 𝑈𝑉
vdegp1ai.i 𝐼 = (iEdg‘𝐺)
vdegp1ai.w 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
vdegp1ai.d ((VtxDeg‘𝐺)‘𝑈) = 𝑃
vdegp1ai.vf (Vtx‘𝐹) = 𝑉
vdegp1ai.x 𝑋𝑉
vdegp1ai.xu 𝑋𝑈
vdegp1ai.y 𝑌𝑉
vdegp1ai.yu 𝑌𝑈
vdegp1ai.f (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑌}”⟩)
Assertion
Ref Expression
vdegp1ai ((VtxDeg‘𝐹)‘𝑈) = 𝑃
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)

Proof of Theorem vdegp1ai
StepHypRef Expression
1 prex 5333 . . 3 {𝑋, 𝑌} ∈ V
2 vdegp1ai.vg . . . 4 𝑉 = (Vtx‘𝐺)
3 vdegp1ai.i . . . 4 𝐼 = (iEdg‘𝐺)
4 vdegp1ai.w . . . . 5 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
5 wrdf 13867 . . . . . 6 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
65ffund 6518 . . . . 5 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼)
74, 6mp1i 13 . . . 4 ({𝑋, 𝑌} ∈ V → Fun 𝐼)
8 vdegp1ai.vf . . . . 5 (Vtx‘𝐹) = 𝑉
98a1i 11 . . . 4 ({𝑋, 𝑌} ∈ V → (Vtx‘𝐹) = 𝑉)
10 vdegp1ai.f . . . . 5 (iEdg‘𝐹) = (𝐼 ++ ⟨“{𝑋, 𝑌}”⟩)
11 wrdv 13878 . . . . . . 7 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V)
124, 11ax-mp 5 . . . . . 6 𝐼 ∈ Word V
13 cats1un 14083 . . . . . 6 ((𝐼 ∈ Word V ∧ {𝑋, 𝑌} ∈ V) → (𝐼 ++ ⟨“{𝑋, 𝑌}”⟩) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑋, 𝑌}⟩}))
1412, 13mpan 688 . . . . 5 ({𝑋, 𝑌} ∈ V → (𝐼 ++ ⟨“{𝑋, 𝑌}”⟩) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑋, 𝑌}⟩}))
1510, 14syl5eq 2868 . . . 4 ({𝑋, 𝑌} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {⟨(♯‘𝐼), {𝑋, 𝑌}⟩}))
16 fvexd 6685 . . . 4 ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∈ V)
17 wrdlndm 13879 . . . . 5 (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼)
184, 17mp1i 13 . . . 4 ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∉ dom 𝐼)
19 vdegp1ai.u . . . . 5 𝑈𝑉
2019a1i 11 . . . 4 ({𝑋, 𝑌} ∈ V → 𝑈𝑉)
21 id 22 . . . 4 ({𝑋, 𝑌} ∈ V → {𝑋, 𝑌} ∈ V)
22 vdegp1ai.xu . . . . . . 7 𝑋𝑈
2322necomi 3070 . . . . . 6 𝑈𝑋
24 vdegp1ai.yu . . . . . . 7 𝑌𝑈
2524necomi 3070 . . . . . 6 𝑈𝑌
2623, 25prneli 4595 . . . . 5 𝑈 ∉ {𝑋, 𝑌}
2726a1i 11 . . . 4 ({𝑋, 𝑌} ∈ V → 𝑈 ∉ {𝑋, 𝑌})
282, 3, 7, 9, 15, 16, 18, 20, 21, 27p1evtxdeq 27295 . . 3 ({𝑋, 𝑌} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈))
291, 28ax-mp 5 . 2 ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)
30 vdegp1ai.d . 2 ((VtxDeg‘𝐺)‘𝑈) = 𝑃
3129, 30eqtri 2844 1 ((VtxDeg‘𝐹)‘𝑈) = 𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  wne 3016  wnel 3123  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  c0 4291  𝒫 cpw 4539  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5066  dom cdm 5555  Fun wfun 6349  cfv 6355  (class class class)co 7156  0cc0 10537  cle 10676  2c2 11693  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  Vtxcvtx 26781  iEdgciedg 26782  VtxDegcvtxdg 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-xadd 12509  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-vtx 26783  df-iedg 26784  df-vtxdg 27248
This theorem is referenced by:  konigsberglem1  28031  konigsberglem2  28032  konigsberglem3  28033
  Copyright terms: Public domain W3C validator