| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1ai | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋 ≠ 𝑈 ≠ 𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1ai.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1ai.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1ai.y | ⊢ 𝑌 ∈ 𝑉 |
| vdegp1ai.yu | ⊢ 𝑌 ≠ 𝑈 |
| vdegp1ai.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) |
| Ref | Expression |
|---|---|
| vdegp1ai | ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5407 | . . 3 ⊢ {𝑋, 𝑌} ∈ V | |
| 2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | wrdf 14536 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 6 | 5 | ffund 6710 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
| 7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → Fun 𝐼) |
| 8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (Vtx‘𝐹) = 𝑉) |
| 10 | vdegp1ai.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) | |
| 11 | wrdv 14547 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
| 12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
| 13 | cats1un 14739 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑋, 𝑌} ∈ V) → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) | |
| 14 | 12, 13 | mpan 690 | . . . . 5 ⊢ ({𝑋, 𝑌} ∈ V → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) |
| 15 | 10, 14 | eqtrid 2782 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) |
| 16 | fvexd 6891 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∈ V) | |
| 17 | wrdlndm 14548 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
| 18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
| 19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∈ 𝑉) |
| 21 | id 22 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → {𝑋, 𝑌} ∈ V) | |
| 22 | vdegp1ai.xu | . . . . . . 7 ⊢ 𝑋 ≠ 𝑈 | |
| 23 | 22 | necomi 2986 | . . . . . 6 ⊢ 𝑈 ≠ 𝑋 |
| 24 | vdegp1ai.yu | . . . . . . 7 ⊢ 𝑌 ≠ 𝑈 | |
| 25 | 24 | necomi 2986 | . . . . . 6 ⊢ 𝑈 ≠ 𝑌 |
| 26 | 23, 25 | prneli 4632 | . . . . 5 ⊢ 𝑈 ∉ {𝑋, 𝑌} |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∉ {𝑋, 𝑌}) |
| 28 | 2, 3, 7, 9, 15, 16, 18, 20, 21, 27 | p1evtxdeq 29493 | . . 3 ⊢ ({𝑋, 𝑌} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
| 29 | 1, 28 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 30 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 31 | 29, 30 | eqtri 2758 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∉ wnel 3036 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ∅c0 4308 𝒫 cpw 4575 {csn 4601 {cpr 4603 〈cop 4607 class class class wbr 5119 dom cdm 5654 Fun wfun 6525 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ≤ cle 11270 2c2 12295 ..^cfzo 13671 ♯chash 14348 Word cword 14531 ++ cconcat 14588 〈“cs1 14613 Vtxcvtx 28975 iEdgciedg 28976 VtxDegcvtxdg 29445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-xadd 13129 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-vtx 28977 df-iedg 28978 df-vtxdg 29446 |
| This theorem is referenced by: konigsberglem1 30233 konigsberglem2 30234 konigsberglem3 30235 |
| Copyright terms: Public domain | W3C validator |