| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vdegp1ai | Structured version Visualization version GIF version | ||
| Description: The induction step for a vertex degree calculation. If the degree of 𝑈 in the edge set 𝐸 is 𝑃, then adding {𝑋, 𝑌} to the edge set, where 𝑋 ≠ 𝑈 ≠ 𝑌, yields degree 𝑃 as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vdegp1ai.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vdegp1ai.u | ⊢ 𝑈 ∈ 𝑉 |
| vdegp1ai.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vdegp1ai.w | ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
| vdegp1ai.d | ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 |
| vdegp1ai.vf | ⊢ (Vtx‘𝐹) = 𝑉 |
| vdegp1ai.x | ⊢ 𝑋 ∈ 𝑉 |
| vdegp1ai.xu | ⊢ 𝑋 ≠ 𝑈 |
| vdegp1ai.y | ⊢ 𝑌 ∈ 𝑉 |
| vdegp1ai.yu | ⊢ 𝑌 ≠ 𝑈 |
| vdegp1ai.f | ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) |
| Ref | Expression |
|---|---|
| vdegp1ai | ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5373 | . . 3 ⊢ {𝑋, 𝑌} ∈ V | |
| 2 | vdegp1ai.vg | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | vdegp1ai.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 4 | vdegp1ai.w | . . . . 5 ⊢ 𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} | |
| 5 | wrdf 14425 | . . . . . 6 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼:(0..^(♯‘𝐼))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) | |
| 6 | 5 | ffund 6655 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → Fun 𝐼) |
| 7 | 4, 6 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → Fun 𝐼) |
| 8 | vdegp1ai.vf | . . . . 5 ⊢ (Vtx‘𝐹) = 𝑉 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (Vtx‘𝐹) = 𝑉) |
| 10 | vdegp1ai.f | . . . . 5 ⊢ (iEdg‘𝐹) = (𝐼 ++ 〈“{𝑋, 𝑌}”〉) | |
| 11 | wrdv 14436 | . . . . . . 7 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → 𝐼 ∈ Word V) | |
| 12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
| 13 | cats1un 14628 | . . . . . 6 ⊢ ((𝐼 ∈ Word V ∧ {𝑋, 𝑌} ∈ V) → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) | |
| 14 | 12, 13 | mpan 690 | . . . . 5 ⊢ ({𝑋, 𝑌} ∈ V → (𝐼 ++ 〈“{𝑋, 𝑌}”〉) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) |
| 15 | 10, 14 | eqtrid 2778 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (iEdg‘𝐹) = (𝐼 ∪ {〈(♯‘𝐼), {𝑋, 𝑌}〉})) |
| 16 | fvexd 6837 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∈ V) | |
| 17 | wrdlndm 14437 | . . . . 5 ⊢ (𝐼 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (♯‘𝐼) ∉ dom 𝐼) | |
| 18 | 4, 17 | mp1i 13 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → (♯‘𝐼) ∉ dom 𝐼) |
| 19 | vdegp1ai.u | . . . . 5 ⊢ 𝑈 ∈ 𝑉 | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∈ 𝑉) |
| 21 | id 22 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → {𝑋, 𝑌} ∈ V) | |
| 22 | vdegp1ai.xu | . . . . . . 7 ⊢ 𝑋 ≠ 𝑈 | |
| 23 | 22 | necomi 2982 | . . . . . 6 ⊢ 𝑈 ≠ 𝑋 |
| 24 | vdegp1ai.yu | . . . . . . 7 ⊢ 𝑌 ≠ 𝑈 | |
| 25 | 24 | necomi 2982 | . . . . . 6 ⊢ 𝑈 ≠ 𝑌 |
| 26 | 23, 25 | prneli 4606 | . . . . 5 ⊢ 𝑈 ∉ {𝑋, 𝑌} |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ V → 𝑈 ∉ {𝑋, 𝑌}) |
| 28 | 2, 3, 7, 9, 15, 16, 18, 20, 21, 27 | p1evtxdeq 29492 | . . 3 ⊢ ({𝑋, 𝑌} ∈ V → ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
| 29 | 1, 28 | ax-mp 5 | . 2 ⊢ ((VtxDeg‘𝐹)‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 30 | vdegp1ai.d | . 2 ⊢ ((VtxDeg‘𝐺)‘𝑈) = 𝑃 | |
| 31 | 29, 30 | eqtri 2754 | 1 ⊢ ((VtxDeg‘𝐹)‘𝑈) = 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {cpr 4575 〈cop 4579 class class class wbr 5089 dom cdm 5614 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ≤ cle 11147 2c2 12180 ..^cfzo 13554 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 Vtxcvtx 28974 iEdgciedg 28975 VtxDegcvtxdg 29444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-xadd 13012 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-vtx 28976 df-iedg 28977 df-vtxdg 29445 |
| This theorem is referenced by: konigsberglem1 30232 konigsberglem2 30233 konigsberglem3 30234 |
| Copyright terms: Public domain | W3C validator |