![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdegp1ai | Structured version Visualization version GIF version |
Description: The induction step for a vertex degree calculation. If the degree of π in the edge set πΈ is π, then adding {π, π} to the edge set, where π β π β π, yields degree π as well. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 3-Mar-2021.) |
Ref | Expression |
---|---|
vdegp1ai.vg | β’ π = (VtxβπΊ) |
vdegp1ai.u | β’ π β π |
vdegp1ai.i | β’ πΌ = (iEdgβπΊ) |
vdegp1ai.w | β’ πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} |
vdegp1ai.d | β’ ((VtxDegβπΊ)βπ) = π |
vdegp1ai.vf | β’ (VtxβπΉ) = π |
vdegp1ai.x | β’ π β π |
vdegp1ai.xu | β’ π β π |
vdegp1ai.y | β’ π β π |
vdegp1ai.yu | β’ π β π |
vdegp1ai.f | β’ (iEdgβπΉ) = (πΌ ++ β¨β{π, π}ββ©) |
Ref | Expression |
---|---|
vdegp1ai | β’ ((VtxDegβπΉ)βπ) = π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5433 | . . 3 β’ {π, π} β V | |
2 | vdegp1ai.vg | . . . 4 β’ π = (VtxβπΊ) | |
3 | vdegp1ai.i | . . . 4 β’ πΌ = (iEdgβπΊ) | |
4 | vdegp1ai.w | . . . . 5 β’ πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} | |
5 | wrdf 14469 | . . . . . 6 β’ (πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} β πΌ:(0..^(β―βπΌ))βΆ{π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2}) | |
6 | 5 | ffund 6722 | . . . . 5 β’ (πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} β Fun πΌ) |
7 | 4, 6 | mp1i 13 | . . . 4 β’ ({π, π} β V β Fun πΌ) |
8 | vdegp1ai.vf | . . . . 5 β’ (VtxβπΉ) = π | |
9 | 8 | a1i 11 | . . . 4 β’ ({π, π} β V β (VtxβπΉ) = π) |
10 | vdegp1ai.f | . . . . 5 β’ (iEdgβπΉ) = (πΌ ++ β¨β{π, π}ββ©) | |
11 | wrdv 14479 | . . . . . . 7 β’ (πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} β πΌ β Word V) | |
12 | 4, 11 | ax-mp 5 | . . . . . 6 β’ πΌ β Word V |
13 | cats1un 14671 | . . . . . 6 β’ ((πΌ β Word V β§ {π, π} β V) β (πΌ ++ β¨β{π, π}ββ©) = (πΌ βͺ {β¨(β―βπΌ), {π, π}β©})) | |
14 | 12, 13 | mpan 689 | . . . . 5 β’ ({π, π} β V β (πΌ ++ β¨β{π, π}ββ©) = (πΌ βͺ {β¨(β―βπΌ), {π, π}β©})) |
15 | 10, 14 | eqtrid 2785 | . . . 4 β’ ({π, π} β V β (iEdgβπΉ) = (πΌ βͺ {β¨(β―βπΌ), {π, π}β©})) |
16 | fvexd 6907 | . . . 4 β’ ({π, π} β V β (β―βπΌ) β V) | |
17 | wrdlndm 14480 | . . . . 5 β’ (πΌ β Word {π₯ β (π« π β {β }) β£ (β―βπ₯) β€ 2} β (β―βπΌ) β dom πΌ) | |
18 | 4, 17 | mp1i 13 | . . . 4 β’ ({π, π} β V β (β―βπΌ) β dom πΌ) |
19 | vdegp1ai.u | . . . . 5 β’ π β π | |
20 | 19 | a1i 11 | . . . 4 β’ ({π, π} β V β π β π) |
21 | id 22 | . . . 4 β’ ({π, π} β V β {π, π} β V) | |
22 | vdegp1ai.xu | . . . . . . 7 β’ π β π | |
23 | 22 | necomi 2996 | . . . . . 6 β’ π β π |
24 | vdegp1ai.yu | . . . . . . 7 β’ π β π | |
25 | 24 | necomi 2996 | . . . . . 6 β’ π β π |
26 | 23, 25 | prneli 4659 | . . . . 5 β’ π β {π, π} |
27 | 26 | a1i 11 | . . . 4 β’ ({π, π} β V β π β {π, π}) |
28 | 2, 3, 7, 9, 15, 16, 18, 20, 21, 27 | p1evtxdeq 28770 | . . 3 β’ ({π, π} β V β ((VtxDegβπΉ)βπ) = ((VtxDegβπΊ)βπ)) |
29 | 1, 28 | ax-mp 5 | . 2 β’ ((VtxDegβπΉ)βπ) = ((VtxDegβπΊ)βπ) |
30 | vdegp1ai.d | . 2 β’ ((VtxDegβπΊ)βπ) = π | |
31 | 29, 30 | eqtri 2761 | 1 β’ ((VtxDegβπΉ)βπ) = π |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 β wne 2941 β wnel 3047 {crab 3433 Vcvv 3475 β cdif 3946 βͺ cun 3947 β c0 4323 π« cpw 4603 {csn 4629 {cpr 4631 β¨cop 4635 class class class wbr 5149 dom cdm 5677 Fun wfun 6538 βcfv 6544 (class class class)co 7409 0cc0 11110 β€ cle 11249 2c2 12267 ..^cfzo 13627 β―chash 14290 Word cword 14464 ++ cconcat 14520 β¨βcs1 14545 Vtxcvtx 28256 iEdgciedg 28257 VtxDegcvtxdg 28722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-xadd 13093 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-vtx 28258 df-iedg 28259 df-vtxdg 28723 |
This theorem is referenced by: konigsberglem1 29505 konigsberglem2 29506 konigsberglem3 29507 |
Copyright terms: Public domain | W3C validator |