Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelpri | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
3 | neanior 3027 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4539 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 157 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 220 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 {cpr 4519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-v 3401 df-un 3849 df-sn 4518 df-pr 4520 |
This theorem is referenced by: prneli 4547 ex-dif 28363 ex-in 28365 ex-pss 28368 ex-res 28381 ex-hash 28393 |
Copyright terms: Public domain | W3C validator |