|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nelpri | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) | 
| Ref | Expression | 
|---|---|
| nelpri.1 | ⊢ 𝐴 ≠ 𝐵 | 
| nelpri.2 | ⊢ 𝐴 ≠ 𝐶 | 
| Ref | Expression | 
|---|---|
| nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | neanior 3035 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 4649 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) | 
| 6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) | 
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: prneli 4656 ex-dif 30442 ex-in 30444 ex-pss 30447 ex-res 30460 ex-hash 30472 | 
| Copyright terms: Public domain | W3C validator |