MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelpri Structured version   Visualization version   GIF version

Theorem nelpri 4587
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
nelpri.1 𝐴𝐵
nelpri.2 𝐴𝐶
Assertion
Ref Expression
nelpri ¬ 𝐴 ∈ {𝐵, 𝐶}

Proof of Theorem nelpri
StepHypRef Expression
1 nelpri.1 . 2 𝐴𝐵
2 nelpri.2 . 2 𝐴𝐶
3 neanior 3036 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 4580 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 154 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 216 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6mp2an 688 1 ¬ 𝐴 ∈ {𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  prneli  4588  ex-dif  28688  ex-in  28690  ex-pss  28693  ex-res  28706  ex-hash  28718
  Copyright terms: Public domain W3C validator