![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelpri | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
3 | neanior 3041 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4671 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | mp2an 691 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: prneli 4678 ex-dif 30455 ex-in 30457 ex-pss 30460 ex-res 30473 ex-hash 30485 |
Copyright terms: Public domain | W3C validator |