![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelpri | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
3 | neanior 3064 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4391 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 152 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 209 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | mp2an 684 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 {cpr 4371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-v 3388 df-un 3775 df-sn 4370 df-pr 4372 |
This theorem is referenced by: prneli 4395 ex-dif 27807 ex-in 27809 ex-pss 27812 ex-res 27825 ex-hash 27837 |
Copyright terms: Public domain | W3C validator |