| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelprd | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| nelprd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| nelprd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| nelprd | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelprd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | nelprd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | neanior 3024 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 4623 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {cpr 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3459 df-un 3929 df-sn 4600 df-pr 4602 |
| This theorem is referenced by: ord2eln012 8504 renfdisj 11288 sumtp 15754 pmtrprfv3 19422 logbgcd1irr 26742 perfectlem2 27179 nbupgrres 29277 usgr2pthlem 29679 eupth2lem3lem6 30148 cycpmco2 33081 cyc2fvx 33082 elrspunsn 33381 relogbzexpd 41917 dvrelog2b 42008 dvrelogpow2b 42010 aks4d1p1p4 42013 aks4d1p6 42023 aks6d1c7lem1 42122 mnuprdlem1 44229 mnuprdlem2 44230 perfectALTVlem2 47662 |
| Copyright terms: Public domain | W3C validator |