MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelprd Structured version   Visualization version   GIF version

Theorem nelprd 4660
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Hypotheses
Ref Expression
nelprd.1 (𝜑𝐴𝐵)
nelprd.2 (𝜑𝐴𝐶)
Assertion
Ref Expression
nelprd (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})

Proof of Theorem nelprd
StepHypRef Expression
1 nelprd.1 . 2 (𝜑𝐴𝐵)
2 nelprd.2 . 2 (𝜑𝐴𝐶)
3 neanior 3036 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 4651 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 154 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 216 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6syl2anc 585 1 (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-v 3477  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  ord2eln012  8497  renfdisj  11274  sumtp  15695  pmtrprfv3  19322  logbgcd1irr  26299  perfectlem2  26733  nbupgrres  28621  usgr2pthlem  29020  eupth2lem3lem6  29486  cycpmco2  32292  cyc2fvx  32293  elrspunsn  32547  relogbzexpd  40840  dvrelog2b  40931  dvrelogpow2b  40933  aks4d1p1p4  40936  aks4d1p6  40946  mnuprdlem1  43031  mnuprdlem2  43032  perfectALTVlem2  46390
  Copyright terms: Public domain W3C validator