![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelprd | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
nelprd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
nelprd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
nelprd | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelprd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | nelprd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
3 | neanior 3041 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4671 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | syl2anc 583 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: ord2eln012 8553 renfdisj 11350 sumtp 15797 pmtrprfv3 19496 logbgcd1irr 26855 perfectlem2 27292 nbupgrres 29399 usgr2pthlem 29799 eupth2lem3lem6 30265 cycpmco2 33126 cyc2fvx 33127 elrspunsn 33422 relogbzexpd 41931 dvrelog2b 42023 dvrelogpow2b 42025 aks4d1p1p4 42028 aks4d1p6 42038 aks6d1c7lem1 42137 mnuprdlem1 44241 mnuprdlem2 44242 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |