| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelprd | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| nelprd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| nelprd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| nelprd | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelprd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | nelprd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 3 | neanior 3018 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 4609 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: ord2eln012 8438 renfdisj 11210 sumtp 15691 pmtrprfv3 19368 logbgcd1irr 26737 perfectlem2 27174 nbupgrres 29344 usgr2pthlem 29743 eupth2lem3lem6 30212 cycpmco2 33105 cyc2fvx 33106 elrspunsn 33393 relogbzexpd 41956 dvrelog2b 42047 dvrelogpow2b 42049 aks4d1p1p4 42052 aks4d1p6 42062 aks6d1c7lem1 42161 mnuprdlem1 44254 mnuprdlem2 44255 perfectALTVlem2 47716 |
| Copyright terms: Public domain | W3C validator |