MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelprd Structured version   Visualization version   GIF version

Theorem nelprd 4624
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Hypotheses
Ref Expression
nelprd.1 (𝜑𝐴𝐵)
nelprd.2 (𝜑𝐴𝐶)
Assertion
Ref Expression
nelprd (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})

Proof of Theorem nelprd
StepHypRef Expression
1 nelprd.1 . 2 (𝜑𝐴𝐵)
2 nelprd.2 . 2 (𝜑𝐴𝐶)
3 neanior 3019 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
4 elpri 4616 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
54con3i 154 . . 3 (¬ (𝐴 = 𝐵𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
63, 5sylbi 217 . 2 ((𝐴𝐵𝐴𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶})
71, 2, 6syl2anc 584 1 (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  ord2eln012  8464  renfdisj  11241  sumtp  15722  pmtrprfv3  19391  logbgcd1irr  26711  perfectlem2  27148  nbupgrres  29298  usgr2pthlem  29700  eupth2lem3lem6  30169  cycpmco2  33097  cyc2fvx  33098  elrspunsn  33407  relogbzexpd  41970  dvrelog2b  42061  dvrelogpow2b  42063  aks4d1p1p4  42066  aks4d1p6  42076  aks6d1c7lem1  42175  mnuprdlem1  44268  mnuprdlem2  44269  perfectALTVlem2  47727
  Copyright terms: Public domain W3C validator