![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelprd | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
nelprd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
nelprd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
nelprd | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelprd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | nelprd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
3 | neanior 3024 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4653 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 216 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | syl2anc 582 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-v 3463 df-un 3949 df-sn 4631 df-pr 4633 |
This theorem is referenced by: ord2eln012 8518 renfdisj 11306 sumtp 15731 pmtrprfv3 19421 logbgcd1irr 26771 perfectlem2 27208 nbupgrres 29249 usgr2pthlem 29649 eupth2lem3lem6 30115 cycpmco2 32946 cyc2fvx 32947 elrspunsn 33241 relogbzexpd 41574 dvrelog2b 41666 dvrelogpow2b 41668 aks4d1p1p4 41671 aks4d1p6 41681 aks6d1c7lem1 41780 mnuprdlem1 43848 mnuprdlem2 43849 perfectALTVlem2 47196 |
Copyright terms: Public domain | W3C validator |