![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelprd | Structured version Visualization version GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, deduction version. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
nelprd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
nelprd.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Ref | Expression |
---|---|
nelprd | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelprd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | nelprd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
3 | neanior 3032 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
4 | elpri 4653 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
6 | 3, 5 | sylbi 217 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-v 3479 df-un 3967 df-sn 4631 df-pr 4633 |
This theorem is referenced by: ord2eln012 8533 renfdisj 11318 sumtp 15781 pmtrprfv3 19486 logbgcd1irr 26851 perfectlem2 27288 nbupgrres 29395 usgr2pthlem 29795 eupth2lem3lem6 30261 cycpmco2 33135 cyc2fvx 33136 elrspunsn 33436 relogbzexpd 41956 dvrelog2b 42047 dvrelogpow2b 42049 aks4d1p1p4 42052 aks4d1p6 42062 aks6d1c7lem1 42161 mnuprdlem1 44267 mnuprdlem2 44268 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |