Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem80 Structured version   Visualization version   GIF version

Theorem prtlem80 36875
Description: Lemma for prter2 36895. (Contributed by Rodolfo Medina, 17-Oct-2010.)
Assertion
Ref Expression
prtlem80 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴}))

Proof of Theorem prtlem80
StepHypRef Expression
1 neldifsnd 4726 1 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  cdif 3884  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-sn 4562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator