Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem5 | Structured version Visualization version GIF version |
Description: Lemma for prter1 36820, prter2 36822, prter3 36823 and prtex 36821. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
prtlem5 | ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2115 | . . . 4 ⊢ (𝑢 = 𝑟 → (𝑢 ∈ 𝑥 ↔ 𝑟 ∈ 𝑥)) | |
2 | elequ1 2115 | . . . 4 ⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑥 ↔ 𝑠 ∈ 𝑥)) | |
3 | 1, 2 | bi2anan9r 636 | . . 3 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
4 | 3 | rexbidv 3225 | . 2 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → (∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
5 | 4 | 2sbievw 2099 | 1 ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 [wsb 2068 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-rex 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |