![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem5 | Structured version Visualization version GIF version |
Description: Lemma for prter1 35546, prter2 35548, prter3 35549 and prtex 35547. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
prtlem5 | ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1892 | . 2 ⊢ Ⅎ𝑣∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥) | |
2 | elequ1 2088 | . . . . 5 ⊢ (𝑢 = 𝑟 → (𝑢 ∈ 𝑥 ↔ 𝑟 ∈ 𝑥)) | |
3 | elequ1 2088 | . . . . 5 ⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑥 ↔ 𝑠 ∈ 𝑥)) | |
4 | 2, 3 | bi2anan9r 636 | . . . 4 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
5 | 4 | rexbidv 3260 | . . 3 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → (∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
6 | 5 | sbiedv 2500 | . 2 ⊢ (𝑣 = 𝑠 → ([𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
7 | 1, 6 | sbie 2498 | 1 ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 [wsb 2042 ∃wrex 3106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-10 2112 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 df-sb 2043 df-rex 3111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |