| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter1 38880, prter2 38882, prter3 38883 and prtex 38881. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| prtlem5 | ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ1 2115 | . . . 4 ⊢ (𝑢 = 𝑟 → (𝑢 ∈ 𝑥 ↔ 𝑟 ∈ 𝑥)) | |
| 2 | elequ1 2115 | . . . 4 ⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑥 ↔ 𝑠 ∈ 𝑥)) | |
| 3 | 1, 2 | bi2anan9r 639 | . . 3 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
| 4 | 3 | rexbidv 3179 | . 2 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → (∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
| 5 | 4 | 2sbievw 2096 | 1 ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 [wsb 2064 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-rex 3071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |