Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem5 Structured version   Visualization version   GIF version

Theorem prtlem5 36801
Description: Lemma for prter1 36820, prter2 36822, prter3 36823 and prtex 36821. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
prtlem5 ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥𝐴 (𝑢𝑥𝑣𝑥) ↔ ∃𝑥𝐴 (𝑟𝑥𝑠𝑥))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑟   𝑢,𝑠,𝑣,𝑥   𝑢,𝐴,𝑣,𝑥
Allowed substitution hints:   𝐴(𝑠,𝑟)

Proof of Theorem prtlem5
StepHypRef Expression
1 elequ1 2115 . . . 4 (𝑢 = 𝑟 → (𝑢𝑥𝑟𝑥))
2 elequ1 2115 . . . 4 (𝑣 = 𝑠 → (𝑣𝑥𝑠𝑥))
31, 2bi2anan9r 636 . . 3 ((𝑣 = 𝑠𝑢 = 𝑟) → ((𝑢𝑥𝑣𝑥) ↔ (𝑟𝑥𝑠𝑥)))
43rexbidv 3225 . 2 ((𝑣 = 𝑠𝑢 = 𝑟) → (∃𝑥𝐴 (𝑢𝑥𝑣𝑥) ↔ ∃𝑥𝐴 (𝑟𝑥𝑠𝑥)))
542sbievw 2099 1 ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥𝐴 (𝑢𝑥𝑣𝑥) ↔ ∃𝑥𝐴 (𝑟𝑥𝑠𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  [wsb 2068  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator