Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem5 | Structured version Visualization version GIF version |
Description: Lemma for prter1 36893, prter2 36895, prter3 36896 and prtex 36894. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
prtlem5 | ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2113 | . . . 4 ⊢ (𝑢 = 𝑟 → (𝑢 ∈ 𝑥 ↔ 𝑟 ∈ 𝑥)) | |
2 | elequ1 2113 | . . . 4 ⊢ (𝑣 = 𝑠 → (𝑣 ∈ 𝑥 ↔ 𝑠 ∈ 𝑥)) | |
3 | 1, 2 | bi2anan9r 637 | . . 3 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → ((𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
4 | 3 | rexbidv 3226 | . 2 ⊢ ((𝑣 = 𝑠 ∧ 𝑢 = 𝑟) → (∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥))) |
5 | 4 | 2sbievw 2097 | 1 ⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 [wsb 2067 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |