![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4511 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2157 ∖ cdif 3766 {csn 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-v 3387 df-dif 3772 df-sn 4369 |
This theorem is referenced by: difsnb 4525 fsnunf2 6681 rpnnen2lem9 15287 fprodfvdvdsd 15394 ramub1lem1 16063 ramub1lem2 16064 prmdvdsprmo 16079 acsfiindd 17492 gsummgp0 18924 islindf4 20502 gsummatr01lem3 20790 nbgrnself 26597 omsmeas 30901 onint1 32956 poimirlem30 33928 prtlem80 34882 gneispace0nelrn3 39222 supminfxr2 40442 fsumnncl 40547 fsumsplit1 40548 hoidmv1lelem2 41552 hspmbllem1 41586 hspmbllem2 41587 fsumsplitsndif 42183 mgpsumunsn 42939 |
Copyright terms: Public domain | W3C validator |