| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4744 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-sn 4577 |
| This theorem is referenced by: difsnb 4758 fsnunf2 7120 fsumsplit1 15649 rpnnen2lem9 16128 fprodfvdvdsd 16242 ramub1lem1 16935 ramub1lem2 16936 prmdvdsprmo 16951 acsfiindd 18456 gsummgp0 20234 islindf4 21773 gsummatr01lem3 22570 nbgrnself 29335 omsmeas 34331 onint1 36482 bj-fvsnun2 37289 poimirlem30 37689 prtlem80 38899 aks6d1c5lem3 42169 gneispace0nelrn3 44174 supminfxr2 45506 fsumnncl 45611 hoidmv1lelem2 46629 hspmbllem1 46663 hspmbllem2 46664 fsumsplitsndif 47403 isubgr3stgrlem3 47998 mgpsumunsn 48391 |
| Copyright terms: Public domain | W3C validator |