| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4746 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-sn 4580 |
| This theorem is referenced by: difsnb 4760 fsnunf2 7126 fsumsplit1 15670 rpnnen2lem9 16149 fprodfvdvdsd 16263 ramub1lem1 16956 ramub1lem2 16957 prmdvdsprmo 16972 acsfiindd 18477 gsummgp0 20221 islindf4 21763 gsummatr01lem3 22560 nbgrnself 29322 omsmeas 34290 onint1 36422 bj-fvsnun2 37229 poimirlem30 37629 prtlem80 38839 aks6d1c5lem3 42110 gneispace0nelrn3 44115 supminfxr2 45449 fsumnncl 45554 hoidmv1lelem2 46574 hspmbllem1 46608 hspmbllem2 46609 fsumsplitsndif 47358 isubgr3stgrlem3 47953 mgpsumunsn 48346 |
| Copyright terms: Public domain | W3C validator |