![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4795 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ∖ cdif 3945 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-sn 4629 |
This theorem is referenced by: difsnb 4809 fsnunf2 7186 fsumsplit1 15698 rpnnen2lem9 16172 fprodfvdvdsd 16284 ramub1lem1 16966 ramub1lem2 16967 prmdvdsprmo 16982 acsfiindd 18516 gsummgp0 20213 islindf4 21703 gsummatr01lem3 22479 nbgrnself 29050 omsmeas 33787 onint1 35800 bj-fvsnun2 36603 poimirlem30 36984 prtlem80 38197 gneispace0nelrn3 43358 supminfxr2 44640 fsumnncl 44749 hoidmv1lelem2 45769 hspmbllem1 45803 hspmbllem2 45804 fsumsplitsndif 46502 mgpsumunsn 47202 |
Copyright terms: Public domain | W3C validator |