![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4817 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-sn 4649 |
This theorem is referenced by: difsnb 4831 fsnunf2 7220 fsumsplit1 15793 rpnnen2lem9 16270 fprodfvdvdsd 16382 ramub1lem1 17073 ramub1lem2 17074 prmdvdsprmo 17089 acsfiindd 18623 gsummgp0 20341 islindf4 21881 gsummatr01lem3 22684 nbgrnself 29394 omsmeas 34288 onint1 36415 bj-fvsnun2 37222 poimirlem30 37610 prtlem80 38817 aks6d1c5lem3 42094 gneispace0nelrn3 44104 supminfxr2 45384 fsumnncl 45493 hoidmv1lelem2 46513 hspmbllem1 46547 hspmbllem2 46548 fsumsplitsndif 47247 mgpsumunsn 48086 |
Copyright terms: Public domain | W3C validator |