| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4773 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-sn 4607 |
| This theorem is referenced by: difsnb 4787 fsnunf2 7183 fsumsplit1 15766 rpnnen2lem9 16245 fprodfvdvdsd 16358 ramub1lem1 17051 ramub1lem2 17052 prmdvdsprmo 17067 acsfiindd 18568 gsummgp0 20283 islindf4 21803 gsummatr01lem3 22600 nbgrnself 29343 omsmeas 34360 onint1 36472 bj-fvsnun2 37279 poimirlem30 37679 prtlem80 38884 aks6d1c5lem3 42155 gneispace0nelrn3 44133 supminfxr2 45463 fsumnncl 45568 hoidmv1lelem2 46588 hspmbllem1 46622 hspmbllem2 46623 fsumsplitsndif 47354 isubgr3stgrlem3 47947 mgpsumunsn 48303 |
| Copyright terms: Public domain | W3C validator |