Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4722 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-sn 4559 |
This theorem is referenced by: difsnb 4736 fsnunf2 7040 fsumsplit1 15385 rpnnen2lem9 15859 fprodfvdvdsd 15971 ramub1lem1 16655 ramub1lem2 16656 prmdvdsprmo 16671 acsfiindd 18186 gsummgp0 19762 islindf4 20955 gsummatr01lem3 21714 nbgrnself 27629 omsmeas 32190 onint1 34565 bj-fvsnun2 35354 poimirlem30 35734 prtlem80 36802 gneispace0nelrn3 41641 supminfxr2 42899 fsumnncl 43003 hoidmv1lelem2 44020 hspmbllem1 44054 hspmbllem2 44055 fsumsplitsndif 44713 mgpsumunsn 45585 |
Copyright terms: Public domain | W3C validator |