| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4759 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 |
| This theorem is referenced by: difsnb 4773 fsnunf2 7163 fsumsplit1 15718 rpnnen2lem9 16197 fprodfvdvdsd 16311 ramub1lem1 17004 ramub1lem2 17005 prmdvdsprmo 17020 acsfiindd 18519 gsummgp0 20234 islindf4 21754 gsummatr01lem3 22551 nbgrnself 29293 omsmeas 34321 onint1 36444 bj-fvsnun2 37251 poimirlem30 37651 prtlem80 38861 aks6d1c5lem3 42132 gneispace0nelrn3 44138 supminfxr2 45472 fsumnncl 45577 hoidmv1lelem2 46597 hspmbllem1 46631 hspmbllem2 46632 fsumsplitsndif 47378 isubgr3stgrlem3 47971 mgpsumunsn 48353 |
| Copyright terms: Public domain | W3C validator |