Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4725 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∖ cdif 3884 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-sn 4562 |
This theorem is referenced by: difsnb 4739 fsnunf2 7058 fsumsplit1 15457 rpnnen2lem9 15931 fprodfvdvdsd 16043 ramub1lem1 16727 ramub1lem2 16728 prmdvdsprmo 16743 acsfiindd 18271 gsummgp0 19847 islindf4 21045 gsummatr01lem3 21806 nbgrnself 27726 omsmeas 32290 onint1 34638 bj-fvsnun2 35427 poimirlem30 35807 prtlem80 36875 gneispace0nelrn3 41752 supminfxr2 43009 fsumnncl 43113 hoidmv1lelem2 44130 hspmbllem1 44164 hspmbllem2 44165 fsumsplitsndif 44825 mgpsumunsn 45697 |
Copyright terms: Public domain | W3C validator |