| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4756 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-sn 4590 |
| This theorem is referenced by: difsnb 4770 fsnunf2 7160 fsumsplit1 15711 rpnnen2lem9 16190 fprodfvdvdsd 16304 ramub1lem1 16997 ramub1lem2 16998 prmdvdsprmo 17013 acsfiindd 18512 gsummgp0 20227 islindf4 21747 gsummatr01lem3 22544 nbgrnself 29286 omsmeas 34314 onint1 36437 bj-fvsnun2 37244 poimirlem30 37644 prtlem80 38854 aks6d1c5lem3 42125 gneispace0nelrn3 44131 supminfxr2 45465 fsumnncl 45570 hoidmv1lelem2 46590 hspmbllem1 46624 hspmbllem2 46625 fsumsplitsndif 47374 isubgr3stgrlem3 47967 mgpsumunsn 48349 |
| Copyright terms: Public domain | W3C validator |