![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4797 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∖ cdif 3960 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-sn 4632 |
This theorem is referenced by: difsnb 4811 fsnunf2 7206 fsumsplit1 15778 rpnnen2lem9 16255 fprodfvdvdsd 16368 ramub1lem1 17060 ramub1lem2 17061 prmdvdsprmo 17076 acsfiindd 18611 gsummgp0 20332 islindf4 21876 gsummatr01lem3 22679 nbgrnself 29391 omsmeas 34305 onint1 36432 bj-fvsnun2 37239 poimirlem30 37637 prtlem80 38843 aks6d1c5lem3 42119 gneispace0nelrn3 44132 supminfxr2 45419 fsumnncl 45528 hoidmv1lelem2 46548 hspmbllem1 46582 hspmbllem2 46583 fsumsplitsndif 47298 isubgr3stgrlem3 47871 mgpsumunsn 48206 |
Copyright terms: Public domain | W3C validator |