| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsn 4743 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-sn 4576 |
| This theorem is referenced by: difsnb 4757 fsnunf2 7126 fsumsplit1 15654 rpnnen2lem9 16133 fprodfvdvdsd 16247 ramub1lem1 16940 ramub1lem2 16941 prmdvdsprmo 16956 acsfiindd 18461 gsummgp0 20238 islindf4 21777 gsummatr01lem3 22573 nbgrnself 29339 omsmeas 34357 onint1 36514 bj-fvsnun2 37321 poimirlem30 37710 prtlem80 38980 aks6d1c5lem3 42250 gneispace0nelrn3 44259 supminfxr2 45591 fsumnncl 45696 hoidmv1lelem2 46714 hspmbllem1 46748 hspmbllem2 46749 fsumsplitsndif 47497 isubgr3stgrlem3 48092 mgpsumunsn 48485 |
| Copyright terms: Public domain | W3C validator |