![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabsb2 | Structured version Visualization version GIF version |
Description: A closed form of brabsb 5541. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
brabsb2 | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5150 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑤)) | |
2 | df-br 5149 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑤 ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) |
4 | vopelopabsb 5539 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2062 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |