Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabsb2 Structured version   Visualization version   GIF version

Theorem brabsb2 36639
Description: A closed form of brabsb 5426. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
brabsb2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem brabsb2
StepHypRef Expression
1 breq 5069 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤))
2 df-br 5068 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
31, 2bitrdi 290 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
4 vopelopabsb 5424 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
53, 4bitrdi 290 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  [wsb 2071  wcel 2111  cop 4561   class class class wbr 5067  {copab 5129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-br 5068  df-opab 5130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator