![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabsb2 | Structured version Visualization version GIF version |
Description: A closed form of brabsb 5550. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
brabsb2 | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5168 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑤)) | |
2 | df-br 5167 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑤 ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) |
4 | vopelopabsb 5548 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
5 | 3, 4 | bitrdi 287 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |