Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabsb2 Structured version   Visualization version   GIF version

Theorem brabsb2 38864
Description: A closed form of brabsb 5535. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
brabsb2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem brabsb2
StepHypRef Expression
1 breq 5144 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤))
2 df-br 5143 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
31, 2bitrdi 287 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
4 vopelopabsb 5533 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
53, 4bitrdi 287 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  [wsb 2063  wcel 2107  cop 4631   class class class wbr 5142  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator